Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 62(3): 645-656, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35948047

RESUMO

The class I histone deacetylase (HDAC) enzymes;HDAC1,2 and 3 form the catalytic engine of at least seven structurally distinct multiprotein complexes in cells. These molecular machines play a vital role in the regulation of chromatin accessibility and gene activity via the removal of acetyl moieties from lysine residues within histone tails. Their inhibition via small molecule inhibitors has beneficial effects in a number of disease types, including the clinical treatment of hematological cancers. We have previously reported a library of proteolysis targeting chimeras (PROTACs) incorporating a benzamide-based HDAC ligand (from CI-994), with an alkyl linker and ligand for the von Hippel-Lindau (VHL) E3 ubiquitin ligase that degrade HDAC1-3 at submicromolar concentrations. Here we report the addition of two novel PROTACs (JPS026 and JPS027), which utilize a ligand for the cellular inhibitor of apoptosis (IAP) family of E3 ligases. We found that both VHL (JPS004)- and IAP (JPS026)-based PROTACs degrade HDAC1-3 and induce histone acetylation to a similar degree. However, JPS026 is significantly more potent at inducing cell death in HCT116 cells than is JPS004. RNA sequencing analysis of PROTAC-treated HCT116 cells showed a distinct gene expression signature in which cell cycle and DNA replication machinery are repressed. Components of the mTORC1 and -2 complexes were also reduced, leading to an increase in FOXO3 and downstream target genes that regulate autophagy and apoptosis. In summary, a novel combination of HDAC and IAP ligands generates a PROTAC with a potent ability to stimulate apoptosis and differential gene expression in human cancer cells.


Assuntos
Quimera de Direcionamento de Proteólise , Proteína Supressora de Tumor Von Hippel-Lindau , Humanos , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/química , Proteólise , Histonas/metabolismo , Ligantes , Transcriptoma , Ubiquitina-Proteína Ligases/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(38): 23597-23605, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900932

RESUMO

Trinucleotide repeat (TNR) expansions cause nearly 20 severe human neurological diseases which are currently untreatable. For some of these diseases, ongoing somatic expansions accelerate disease progression and may influence age of onset. This new knowledge emphasizes the importance of understanding the protein factors that drive expansions. Recent genetic evidence indicates that the mismatch repair factor MutSß (Msh2-Msh3 complex) and the histone deacetylase HDAC3 function in the same pathway to drive triplet repeat expansions. Here we tested the hypothesis that HDAC3 deacetylates MutSß and thereby activates it to drive expansions. The HDAC3-selective inhibitor RGFP966 was used to examine its biological and biochemical consequences in human tissue culture cells. HDAC3 inhibition efficiently suppresses repeat expansion without impeding canonical mismatch repair activity. Five key lysine residues in Msh3 are direct targets of HDAC3 deacetylation. In cells expressing Msh3 in which these lysine residues are mutated to arginine, the inhibitory effect of RGFP966 on expansions is largely bypassed, consistent with the direct deacetylation hypothesis. RGFP966 treatment does not alter MutSß subunit abundance or complex formation but does partially control its subcellular localization. Deacetylation sites in Msh3 overlap a nuclear localization signal, and we show that localization of MutSß is partially dependent on HDAC3 activity. Together, these results indicate that MutSß is a key target of HDAC3 deacetylation and provide insights into an innovative regulatory mechanism for triplet repeat expansions. The results suggest expansion activity may be druggable and support HDAC3-selective inhibition as an attractive therapy in some triplet repeat expansion diseases.


Assuntos
Reparo de Erro de Pareamento de DNA/genética , Histona Desacetilases , Expansão das Repetições de Trinucleotídeos/genética , Acetilação/efeitos dos fármacos , Acrilamidas/farmacologia , Linhagem Celular , Células Cultivadas , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Fenilenodiaminas/farmacologia
3.
Molecules ; 25(19)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987782

RESUMO

Histone deacetylase (HDAC) enzymes play crucial roles in epigenetic gene expression and are an attractive therapeutic target. Five HDAC inhibitors have been approved for cancer treatment to date, however, clinical applications have been limited due to poor single-agent drug efficacy and side effects associated with a lack of HDAC isoform or complex selectivity. An emerging strategy aiming to address these limitations is the development of bifunctional HDAC therapeutics-single molecules comprising a HDAC inhibitor conjugated to another specificity targeting moiety. This review summarises the recent advancements in novel types of dual-targeting HDAC modulators, including proteolysis-targeting chimeras (PROTACs), with a focus on HDAC isoform and complex selectivity, and the future potential of such bifunctional molecules in achieving enhanced drug efficacy and therapeutic benefits in treating disease.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Terapia de Alvo Molecular , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo
4.
Molecules ; 24(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514464

RESUMO

Antibiotic resistance is a global health concern and a current threat to modern medicine and society. New strategies for antibiotic drug design and delivery offer a glimmer of hope in a currently limited pipeline of new antibiotics. One strategy involves conjugating iron-chelating microbial siderophores to an antibiotic or antimicrobial agent to enhance uptake and antibacterial potency. Cefiderocol (S-649266) is a promising cephalosporin-catechol conjugate currently in phase III clinical trials that utilizes iron-mediated active transport and demonstrates enhanced potency against multi-drug resistant (MDR) Gram-negative pathogens. Such molecules demonstrate that siderophore-antibiotic conjugates could be important future medicines to add to our antibiotic arsenal. This review is written in the context of the chemical design of siderophore-antibiotic conjugates focusing on the differing siderophore, linker, and antibiotic components that make up conjugates. We selected chemically distinct siderophore-antibiotic conjugates as exemplary conjugates, rather than multiple analogues, to highlight findings to date. The review should offer a general guide to the uninitiated in the molecular design of siderophore-antibiotic conjugates.


Assuntos
Antibacterianos/farmacologia , Desenho de Fármacos , Sideróforos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Ensaios Clínicos como Assunto , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Humanos , Peptídeos/química , Peptídeos/farmacologia , Sideróforos/síntese química , Sideróforos/química
5.
Beilstein J Org Chem ; 14: 2646-2650, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30410626

RESUMO

Siderophore-antibiotic conjugates consist of an antibiotic covalently linked by a tether to a siderophore. Such conjugates can demonstrate enhanced uptake and internalisation to the bacterial cell resulting in significantly reduced MIC values and extended spectrum of activity. Phenothiazines are a class of small molecules that have been identified as a potential treatment for multidrug resistant tuberculosis and latent TB. Herein we report the design and synthesis of the first phenothiazine-siderophore conjugate. A convergent synthetic route was developed whereby the functionalised phenothiazine component was prepared in four steps and the siderophore component also prepared in four steps. In M. smegmatis the functionalised phenothiazine demonstrated an equipotent MIC value in direct comparison to the parent phenothiazine from which it was derived. The final conjugate was synthesised by amide bond formation between the two components and global deprotection of the PMB protecting groups to unmask the catechol iron chelating groups of the siderophore. The synthesis is readily amenable to the preparation of analogues whereby the siderophore component of the conjugate can be modified. The route will be used to prepare a library of siderophore-phenothiazine conjugates for full biological evaluation of much needed new antibacterial agents.

6.
Beilstein J Org Chem ; 14: 2680-2688, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30410629

RESUMO

A series of analogues of Pseudonocardia sp. natural products were synthesized, which have been reported to possess potent antibacterial activity against Helicobacter pylori and induce growth defects in Escherichia coli and Staphylococcus aureus. Taking inspiration from a methodology used in our total synthesis of natural products, we applied this methodology to access analogues possessing bulky N-substituents, traditionally considered to be challenging scaffolds. Screening of the library provided valuable insights into the structure-activity relationship of the bacterial growth defects, and suggested that selectivity between bacterial species should be attainable. Furthermore, a structurally related series of analogues was observed to inhibit production of the virulence factor pyocyanin in the human pathogen Pseudomonas aeruginosa, which may be a result of their similarity to the Pseudomonas quinolone signal (PQS) quorum sensing autoinducer. This provided new insights regarding the effect of N-substitution in PQS analogues, which has been hitherto underexplored.

7.
Proc Natl Acad Sci U S A ; 111(50): 17743-8, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25385610

RESUMO

The preservation of our cultural heritage is of great importance to future generations. Despite this, significant problems have arisen with the conservation of waterlogged wooden artifacts. Three major issues facing conservators are structural instability on drying, biological degradation, and chemical degradation on account of Fe(3+)-catalyzed production of sulfuric and oxalic acid in the waterlogged timbers. Currently, no conservation treatment exists that effectively addresses all three issues simultaneously. A new conservation treatment is reported here based on a supramolecular polymer network constructed from natural polymers with dynamic cross-linking formed by a combination of both host-guest complexation and a strong siderophore pendant from a polymer backbone. Consequently, the proposed consolidant has the ability to chelate and trap iron while enhancing structural stability. The incorporation of antibacterial moieties through a dynamic covalent linkage into the network provides the material with improved biological resistance. Exploiting an environmentally compatible natural material with completely reversible chemistries is a safer, greener alternative to current strategies and may extend the lifetime of many culturally relevant waterlogged artifacts around the world.

8.
European J Org Chem ; 2016(35): 5799-5802, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28111524

RESUMO

Two divergent synthetic routes are reported offering access to four quinolone natural products from Pseudonocardia sp. CL38489. Key steps to the natural products involved a regioselective epoxidation, an intramolecular Buchwald-Hartwig amination and a final acid-catalysed 1,3-allylic-alcohol rearrangement to give two of the natural products in one step. This study completes the synthesis of all eight antibacterial quinolone natural products reported in the family. In addition, this modular strategy enables an improved synthesis towards two natural products previously reported.

9.
Beilstein J Org Chem ; 12: 1428-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27559393

RESUMO

Pyocyanin is a small molecule produced by Pseudomonas aeruginosa that plays a crucial role in the pathogenesis of infections by this notorious opportunistic pathogen. The inhibition of pyocyanin production has been identified as an attractive antivirulence strategy for the treatment of P. aeruginosa infections. Herein, we report the discovery of an inhibitor of pyocyanin production in cultures of wild-type P. aeruginosa which is based around a 4-alkylquinolin-2(1H)-one scaffold. To the best of our knowledge, this is the first reported example of pyocyanin inhibition by a compound based around this molecular framework. The compound may therefore be representative of a new structural sub-class of pyocyanin inhibitors, which could potentially be exploited in in a therapeutic context for the development of critically needed new antipseudomonal agents. In this context, the use of wild-type cells in this study is notable, since the data obtained are of direct relevance to native situations. The compound could also be of value in better elucidating the role of pyocyanin in P. aeruginosa infections. Evidence suggests that the active compound reduces the level of pyocyanin production by inhibiting the cell-cell signalling mechanism known as quorum sensing. This could have interesting implications; quorum sensing regulates a range of additional elements associated with the pathogenicity of P. aeruginosa and there is a wide range of other potential applications where the inhibition of quorum sensing is desirable.

10.
Proc Natl Acad Sci U S A ; 108(17): 6793-8, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21383137

RESUMO

Structurally diverse libraries of novel small molecules represent important sources of biologically active agents. In this paper we report the development of a diversity-oriented synthesis strategy for the generation of diverse small molecules based around a common macrocyclic peptidomimetic framework, containing structural motifs present in many naturally occurring bioactive compounds. Macrocyclic peptidomimetics are largely underrepresented in current small-molecule screening collections owing primarily to synthetic intractability; thus novel molecules based around these structures represent targets of significant interest, both from a biological and a synthetic perspective. In a proof-of-concept study, the synthesis of a library of 14 such compounds was achieved. Analysis of chemical space coverage confirmed that the compound structures indeed occupy underrepresented areas of chemistry in screening collections. Crucial to the success of this approach was the development of novel methodologies for the macrocyclic ring closure of chiral α-azido acids and for the synthesis of diketopiperazines using solid-supported N methylmorpholine. Owing to their robust and flexible natures, it is envisaged that both new methodologies will prove to be valuable in a wider synthetic context.


Assuntos
Compostos Macrocíclicos/química , Compostos Macrocíclicos/síntese química , Peptidomiméticos/química , Peptidomiméticos/síntese química , Estrutura Molecular
11.
Angew Chem Int Ed Engl ; 53(48): 13093-7, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25257387

RESUMO

Small-molecule modulators of biological targets play a crucial role in biology and medicine. In this context, diversity-oriented synthesis (DOS) provides strategies toward generating small molecules with a broad range of unique scaffolds, and hence three-dimensionality, to target a broad area of biological space. In this study, an organocatalysis-derived DOS library of macrocycles was synthesized by exploiting the pluripotency of aldehydes. The orthogonal combination of multiple diversity-generating organocatalytic steps with alkene metathesis enabled the synthesis of 51 distinct macrocyclic structures bearing 48 unique scaffolds in only two to four steps without the need for protecting groups. Furthermore, merging organocatalysis and alkene metathesis in a one-pot protocol facilitated the synthesis of drug-like macrocycles with natural-product-like levels of shape diversity in a single step.


Assuntos
Técnicas de Química Combinatória/métodos , Compostos Macrocíclicos/síntese química , Catálise , Compostos Macrocíclicos/química , Modelos Moleculares , Estrutura Molecular
12.
ACS Med Chem Lett ; 15(1): 93-98, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38229760

RESUMO

Histone deacetylases 1-3 (HDAC1, HDAC2, and HDAC3) and their associated corepressor complexes play important roles in regulating chromatin structure and gene transcription. HDAC enzymes are also validated drug targets for oncology and offer promise toward new drugs for neurodegenerative diseases and cardiovascular diseases. We synthesized four novel heterobifunctional molecules designed to recruit the mouse double minute 2 homologue (MDM2) E3 ligase to degrade HDAC1-3 utilizing the MDM2 inhibitor idasanutlin, known as proteolysis targeting chimeras (PROTACs). Idasanutlin inhibits the MDM2-P53 protein-protein interaction and is in clinical trials. Although two MDM2-recruiting heterobifunctional molecules reduced HDAC1 and HDAC2 abundance with complete selectivity over HDAC3 and reduced HDAC1/2 corepressor components LSD1 and SIN3A, we were surprised to observe that idasanutlin alone was also capable of this effect. This finding suggests an association between the MDM2 E3 ligase and HDAC1/2 corepressor complexes, which could be important for designing future dual/bifunctional HDAC- and MDM2-targeting therapeutics, such as PROTACs.

13.
Biochemistry ; 52(25): 4433-8, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23713667

RESUMO

The Pseudomonas aeruginosa quinolone signal (PQS) is a quorum sensing molecule that plays an important role in regulating the virulence of this organism. We have purified the ligand binding domain of the receptor PqsRLBD for PQS and have used Förster resonance energy transfer fluorimetry and kinetic modeling to characterize the ligand binding in vitro. The dissociation constant for binding of PQS to a ligand binding site in (PqsRLBD)2 dimers was determined to be 1.2 ± 0.3 µM. We found no cooperativity in the consecutive binding of two ligand molecules to the dimer.


Assuntos
Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Quinolonas/química , Quinolonas/metabolismo , Percepção de Quorum/fisiologia , Transferência Ressonante de Energia de Fluorescência , Ligantes , Modelos Moleculares , Ligação Proteica , Pseudomonas aeruginosa/patogenicidade , Virulência
14.
Microbiology (Reading) ; 159(Pt 11): 2375-2385, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24025601

RESUMO

We describe a previously cryptic phenotype associated with the opportunistic phytopathogen Pectobacterium atrosepticum (Pca): surface swarming. We found that when Pca was spotted onto plates containing <0.5% (w/v) agar, the culture produced copious amounts of extracellular matrix material containing highly motile cells. Once produced, this 'slime layer' spread rapidly across the plate either as an advancing front or as tendrils. Transposon mutagenesis was used to identify mutants that were affected in swarming. Hypo-swarmer mutants mostly carried insertions in a horizontally acquired island (HAI5), which encodes a cluster of genes involved in O antigen biosynthesis. Hyper-swarmer mutants mostly carried insertions in hexY, a known antagonist of the class I flagellar master regulator, FlhD4C2. In addition, we found that the nucleoid protein, histone-like nuclear structuring protein 2 (H-NS2), also regulated swarming behaviour. A mutant in which hns2 was overexpressed displayed a hyper-swarming phenotype, whereas a mutant in which the hns2 ORF was inactivated had a hypo-swarming phenotype. Swarming was also regulated by quorum sensing (QS) and by the carbon source being utilized. We show, using a range of epistasis experiments, that optimal swarming requires both motility and O antigen biosynthesis, and that H-NS2 and QS both promote swarming through their effects on motility.


Assuntos
Locomoção , Antígenos O/biossíntese , Pectobacterium/fisiologia , Percepção de Quorum , Vias Biossintéticas , Elementos de DNA Transponíveis , Proteínas da Matriz Extracelular/metabolismo , Regulação Bacteriana da Expressão Gênica , Ilhas Genômicas , Mutagênese Insercional , Pectobacterium/genética , Pectobacterium/metabolismo , Polissacarídeos Bacterianos/metabolismo
15.
Molecules ; 18(10): 11783-96, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24071985

RESUMO

Pseudomonas aeruginosa is a human pathogen associated with a variety of life-threatening nosocomial infections. This organism produces a range of virulence factors which actively cause damage to host tissues. One such virulence factor is pyocyanin, known to play a crucial role in the pathogenesis of P. aeruginosa infections. Previous studies had identified a novel compound capable of strongly inhibiting the production of pyocyanin. It was postulated that this inhibition results from modulation of an intercellular communication system termed quorum sensing, via direct binding of the compound with the LasR protein receptor. This raised the possibility that the compound could be an antagonist of quorum sensing in P. aeruginosa, which could have important implications as this intercellular signaling mechanism is known to regulate many additional facets of P. aeruginosa pathogenicity. However, there was no direct evidence for the binding of the active compound to LasR (or any other targets). Herein we describe the design and synthesis of a biotin-tagged version of the active compound. This could potentially be used as an affinity-based chemical probe to ascertain, in a direct fashion, the active compound's macromolecular biological targets, and thus better delineate the mechanism by which it reduces the level of pyocyanin production.


Assuntos
Antibacterianos/farmacologia , Biotina/química , Sondas Moleculares/síntese química , Pseudomonas aeruginosa/metabolismo , Piocianina/biossíntese , Azidas/síntese química , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum , Fatores de Virulência/biossíntese
16.
Angew Chem Int Ed Engl ; 52(41): 10706-33, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24038605

RESUMO

The introduction of effective antibacterial therapies for infectious diseases in the mid-20th century completely revolutionized clinical practices and helped to facilitate the development of modern medicine. Many potentially life-threatening conditions became easily curable, greatly reducing the incidence of death or disability resulting from bacterial infections. This overwhelming historical success makes it very difficult to imagine life without effective antibacterials; however, the inexorable rise of antibiotic resistance has made this a very real and disturbing possibility for some infections. The ruthless selection for resistant bacteria, coupled with insufficient investment in antibacterial research, has led to a steady decline in the efficacy of existing therapies and a paucity of novel structural classes with which to replace them, or complement their use. This situation has resulted in a very pressing need for the discovery of novel antibiotics and treatment strategies, the development of which is likely to be a key challenge to 21st century medicinal chemistry.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Descoberta de Drogas/métodos , Farmacorresistência Bacteriana Múltipla , Sequência de Aminoácidos , Animais , Bactérias/química , Bactérias/genética , Infecções Bacterianas/microbiologia , Bacteriocinas/química , Bacteriocinas/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Humanos , Metagenoma , Dados de Sequência Molecular , Percepção de Quorum/efeitos dos fármacos
17.
RSC Chem Biol ; 4(9): 623-634, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37654508

RESUMO

Over the past three decades, we have witnessed the progression of small molecule chemical probes designed to inhibit the catalytic active site of histone deacetylase (HDAC) enzymes into FDA approved drugs. However, it is only in the past five years we have witnessed the emergence of proteolysis targeting chimeras (PROTACs) capable of promoting the proteasome mediated degradation of HDACs. This is a field still in its infancy, however given the current progress of PROTACs in clinical trials and the fact that FDA approved HDAC drugs are already in the clinic, there is significant potential in developing PROTACs to target HDACs as therapeutics. Beyond therapeutics, PROTACs also serve important applications as chemical probes to interrogate fundamental biology related to HDACs via their unique degradation mode of action. In this review, we highlight some of the key findings to date in the discovery of PROTACs targeting HDACs by HDAC class and HDAC isoenzyme, current gaps in PROTACs to target HDACs and future outlooks.

18.
Org Biomol Chem ; 10(30): 6032-44, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22499353

RESUMO

Many species of bacteria employ a mechanism of intercellular communication known as quorum sensing which is mediated by small diffusible signalling molecules termed autoinducers. The most common class of autoinducer used by Gram-negative bacteria are N-acylated-L-homoserine lactones (AHLs). Pseudomonas aeruginosa is a clinically important bacterium which is known to use AHL-mediated quorum sensing systems to regulate a variety of processes associated with virulence. Thus the selective disruption of AHL-based quorum sensing represents a strategy to attenuate the pathogenicity of this bacterium. Herein we describe the design, synthesis and biological evaluation of a collection of structurally novel AHL mimics. A number of new compounds capable of modulating the LasR-dependent quorum sensing system of P. aeruginosa were identified, which could have value as molecular tools to study and manipulate this signalling pathway. Worthy of particular note, this research has delivered novel potent quorum sensing antagonists, which strongly inhibit the production of virulence factors in a wild type strain of this pathogenic bacterium.


Assuntos
Materiais Biomiméticos/síntese química , Materiais Biomiméticos/farmacologia , Desenho de Fármacos , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Acil-Butirolactonas/química , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/antagonistas & inibidores , Materiais Biomiméticos/química , Técnicas de Química Sintética , Transativadores/agonistas , Transativadores/antagonistas & inibidores
19.
Org Biomol Chem ; 10(42): 8452-64, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23014532

RESUMO

Pseudomonas aeruginosa is a notorious human pathogen associated with a range of life-threatening nosocomial infections. There is an increasing problem of antibiotic resistance in P. aeruginosa, highlighted by the emergence of multi-drug resistant strains. Thus the exploration of new strategies for the treatment of P. aeruginosa infections is clearly warranted. P. aeruginosa is known to produce a range of virulence factors that enhance its ability to damage the host tissue and cause disease. One of the most important virulence factors is pyocyanin. P. aeruginosa regulates pyocyanin production using an intercellular communication mechanism called quorum sensing, which is mediated by small signalling molecules termed autoinducers. One native autoinducer is N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL). Herein we report the synthesis of a collection of abiotic OdDHL-mimics. A number of novel compounds capable of competing with the endogenous OdDHL and consequently, inhibiting the production of pyocyanin in cultures of wild type P. aeruginosa were identified. We present evidence suggesting that compounds of this general structural type act as direct antagonists of quorum sensing in P. aeruginosa and as such may find value as molecular tools for the study and manipulation of this signalling pathway. A direct quantitative comparison of the pyocyanin suppressive activities of the most active OdDHL-mimics with some previously-reported inhibitors (based around different general structural frameworks) of quorum sensing from the literature, was also made.


Assuntos
4-Butirolactona/análogos & derivados , Homosserina/análogos & derivados , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina/metabolismo , Percepção de Quorum/efeitos dos fármacos , Fatores de Virulência/metabolismo , 4-Butirolactona/síntese química , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Homosserina/síntese química , Homosserina/química , Homosserina/farmacologia , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
20.
RSC Med Chem ; 13(12): 1634-1639, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36545434

RESUMO

Click chemistry was utilised to prepare a library of PROTACs based on entinostat a class I histone deacetylase (HDAC) inhibitor in clinical trials. A novel PROTAC JMC-137 was identified as a HDAC1/2 and HDAC3 degrader in HCT116 cells. However, potency was compromised compared to previously identified class I HDAC PROTACs highlighting the importance in the choice of HDAC ligand, functional group for linker attachment and positioning in PROTAC design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA