Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Immunity ; 56(5): 1098-1114.e10, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37003256

RESUMO

Poor maternal diet during pregnancy is a risk factor for severe lower respiratory infections (sLRIs) in the offspring, but the underlying mechanisms remain elusive. Here, we demonstrate that in mice a maternal low-fiber diet (LFD) led to enhanced LRI severity in infants because of delayed plasmacytoid dendritic cell (pDC) recruitment and perturbation of regulatory T cell expansion in the lungs. LFD altered the composition of the maternal milk microbiome and assembling infant gut microbiome. These microbial changes reduced the secretion of the DC growth factor Flt3L by neonatal intestinal epithelial cells and impaired downstream pDC hematopoiesis. Therapy with a propionate-producing bacteria isolated from the milk of high-fiber diet-fed mothers, or supplementation with propionate, conferred protection against sLRI by restoring gut Flt3L expression and pDC hematopoiesis. Our findings identify a microbiome-dependent Flt3L axis in the gut that promotes pDC hematopoiesis in early life and confers disease resistance against sLRIs.


Assuntos
Microbiota , Infecções Respiratórias , Animais , Feminino , Camundongos , Gravidez , Células Dendríticas , Dieta , Propionatos
2.
Nature ; 560(7716): 49-54, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30013118

RESUMO

As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation. These genomes reflect the diversity of this complex ecosystem, with genus-level representatives for more than sixty per cent of the community. Meta-omic analysis revealed key populations involved in the degradation of organic matter, including bacteria whose genomes encode a previously undescribed fungal pathway for xylose degradation. Microbial and geochemical data highlight lineages that correlate with the production of greenhouse gases and indicate novel syntrophic relationships. Our findings link changing biogeochemistry to specific microbial lineages involved in carbon processing, and provide key information for predicting the effects of climate change on permafrost systems.


Assuntos
Carbono/metabolismo , Congelamento , Metagenoma/genética , Pergelissolo/química , Pergelissolo/microbiologia , Microbiologia do Solo , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Fermentação , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Aquecimento Global , Metano/metabolismo , Polissacarídeos/metabolismo , Suécia , Xilose/metabolismo
3.
Biotechnol Bioeng ; 118(4): 1636-1648, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33438216

RESUMO

Mixed-culture fermentation (MCF) enables carbon recycling from complex organic waste streams into valuable feedstock chemicals. Using complex microbial consortia, MCF systems can be tuned to produce a range of biochemicals to meet market demand. However, the metabolic mechanisms and community interactions which drive biochemical production changes under differing conditions are currently poorly understood. These mechanisms are critical to useful MCF production models. Furthermore, predictable product transitions are currently limited to pH-driven changes between butyrate and ethanol, and chain-elongation (fed by lactate, acetate, and ethanol) to butyrate, valerate, and hexanoate. Lactate, a high-value biopolymer feedstock chemical, has been observed in transition states, but sustained production has not been described. In this study, steady state lactate production was achieved by increasing the organic loading rate of a butyrate-producing system from limiting to nonlimiting conditions at pH 5.5. Crucially, butyrate production resumed upon return to substrate-limited conditions. 16S ribosomal DNA community profiling combined with metaproteomics demonstrated that the butyrate-producing lineage Megasphaera redirected carbon flow through the methylglyoxal bypass when substrate was nonlimiting, which altered the community structure and metabolic expression toward lactate production. This metabolic mechanism can be included in future MCF models to describe the changes in product generation in substrate nonlimiting conditions.


Assuntos
Reatores Biológicos , Glucose/metabolismo , Ácido Láctico/biossíntese , Consórcios Microbianos , Técnicas de Cocultura , Fermentação
4.
Biotechnol Bioeng ; 111(11): 2139-54, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24980940

RESUMO

Mixed-culture fermentation is a key central process to enable next generation biofuels and biocommodity production due to economic and process advantages over application of pure cultures. However, a key limitation to the application of mixed-culture fermentation is predicting culture product response, related to metabolic regulation mechanisms. This is also a limitation in pure culture bacterial fermentation. This review evaluates recent literature in both pure and mixed culture studies with a focus on understanding how regulation and signaling mechanisms interact with metabolic routes and activity. In particular, we focus on how microorganisms balance electron sinking while maximizing catabolic energy generation. Analysis of these mechanisms and their effect on metabolism dynamics is absent in current models of mixed-culture fermentation. This limits process prediction and control, which in turn limits industrial application of mixed-culture fermentation. A key mechanism appears to be the role of internal electron mediating cofactors, and related regulatory signaling. This may determine direction of electrons towards either hydrogen or reduced organics as end-products and may form the basis for future mechanistic models.


Assuntos
Biocombustíveis , Reatores Biológicos/microbiologia , Consórcios Microbianos/fisiologia , Transporte de Elétrons , Metabolismo Energético , Fermentação , Hidrogênio/metabolismo , Compostos Orgânicos/metabolismo , Oxirredução
5.
J Inorg Biochem ; 256: 112539, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593609

RESUMO

Motivated by the ambition to establish an enzyme-driven bioleaching pathway for copper extraction, properties of the Type-1 copper protein rusticyanin from Acidithiobacillus ferrooxidans (AfR) were compared with those from an ancestral form of this enzyme (N0) and an archaeal enzyme identified in Ferroplasma acidiphilum (FaR). While both N0 and FaR show redox potentials similar to that of AfR their electron transport rates were significantly slower. The lack of a correlation between the redox potentials and electron transfer rates indicates that AfR and its associated electron transfer chain evolved to specifically facilitate the efficient conversion of the energy of iron oxidation to ATP formation. In F. acidiphilum this pathway is not as efficient unless it is up-regulated by an as of yet unknown mechanism. In addition, while the electrochemical properties of AfR were consistent with previous data, previously unreported behavior was found leading to a form that is associated with a partially unfolded form of the protein. The cyclic voltammetry (CV) response of AfR immobilized onto an electrode showed limited stability, which may be connected to the presence of the partially unfolded state of this protein. Insights gained in this study may thus inform the engineering of optimized rusticyanin variants for bioleaching processes as well as enzyme-catalyzed solubilization of copper-containing ores such as chalcopyrite.


Assuntos
Azurina , Modelos Moleculares , Cinética , Eletroquímica , Azurina/química , Azurina/genética , Azurina/metabolismo , Actinobacteria/química , Thermoplasmales/química , Espectroscopia de Ressonância de Spin Eletrônica , Estrutura Terciária de Proteína , Ferro/metabolismo , Oxirredução , Biotecnologia , Estabilidade Proteica , Sequência Conservada/genética
6.
Microbiol Resour Announc ; 11(11): e0071622, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36197296

RESUMO

Dickeya species cause soft rots on many commercial crops. Here, we present the draft genomes of Dickeya oryzae (BRIP 64262) and Dickeya zeae (BRIP 64263) isolates causing soft rot on banana (Musa spp.) and pineapple (Ananas comosus) plants, respectively. This expands the range of available genomes from plant-pathogenic Dickeya species.

7.
Microbiol Resour Announc ; 11(10): e0024722, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36129290

RESUMO

Robbsia andropogonis causes leaf spots, streaks, or stripes on a wide range of commercially important crops. Here, we present the draft genome sequences of two isolates of R. andropogonis sourced from Sorghum bicolor displaying symptoms of bacterial leaf stripe disease in Australia.

8.
Biotechnol Adv ; 59: 107950, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35364226

RESUMO

The market of biobased products obtainable via fermentation processes has steadily increased over the past few years, driven by the need to create a decarbonized economy. To date, industrial fermentation (IF) employs either pure or mixed microbial cultures (MMC), whereby the type of the microbial catalysts and the used feedstock affect metabolic pathways and, in turn, the type of product(s) generated. In many cases, especially when dealing with MMC, the economic viability of IF is still hindered by factors such as the low attained product titer and selectivity, which ultimately challenge the downstream recovery and purification steps. In this context, electro-fermentation (EF) represents an innovative approach, based on the use of a polarized electrode interface to trigger changes in the rate, yield, titer or product distribution deriving from traditional fermentation processes. In principle, the electrode in EF can act as an electron acceptor (i.e., anodic electro-fermentation, AEF) or donor (i.e., cathodic electro-fermentation, CEF), or simply as a means to control the oxidation-reduction potential of the fermentation broth. However, the molecular and biochemical basis underlying EF are still largely unknown. This review provides a comprehensive overview of recent literature studies including both AEF and CEF examples using pure or mixed microbial cultures. A critical analysis of biochemical, microbiological, and engineering aspects which presently hamper the transition of the EF technology from the laboratory to the market is also presented.


Assuntos
Eletricidade , Eletrodos , Fermentação
9.
Sci Total Environ ; 672: 625-633, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30974354

RESUMO

Sulfate reducing bacteria (SRB) can contribute to facilitating serious concrete corrosion through the production of hydrogen sulfide in sewers. Recently, free nitrous acid (FNA) was discovered as a promising antimicrobial agent to inhibit SRB activities thereby limiting hydrogen sulfide production in sewers. However, knowledge of the bacterial response to increasing levels of the antimicrobial agent is unknown. Here we report the proteomic response of Desulfovibrio vulgaris Hildenborough and reveal that the antimicrobial effect of FNA is multi-targeted and dependent on the FNA levels. This was achieved using a sequential window acquisition of all theoretical mass spectrometry analysis to determine protein abundance variations in D. vulgaris during exposure to different FNA concentrations. When exposed to 1.0 µg N/L FNA, nitrite reduction (nitrite reductase) related proteins and nitrosative stress related proteins, including the hybrid cluster protein, showed distinct increased abundances. When exposed to 4.0 and 8.0 µg N/L FNA, increased abundance was detected for proteins putatively involved in nitrite reduction. Abundance of proteins involved in the sulfate reduction pathway (from adenylylphophosulfate to sulfite) and lactate oxidation pathway (from pyruvate to acetate) were initially inhibited in response to FNA at 8 h incubation, and then recovered at 12 h incubation. Lowered ribosomal protein abundance in D. vulgaris was detected, however, total cellular protein levels were mostly constant in the presence or absence of FNA. In addition, this study indicates that proteins coded by genes DVU2543, DVU0772, and DVU3212 potentially participate in resisting oxidative stress with FNA exposure. These findings share new insights for understanding the dynamic responses of D. vulgaris to FNA and could be useful to guide and improve the practical applications of FNA-based technologies for control of sewer corrosion.


Assuntos
Anti-Infecciosos/toxicidade , Desulfovibrio vulgaris/fisiologia , Ácido Nitroso/toxicidade , Proteoma/metabolismo , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Nitrito Redutases/metabolismo , Nitritos/metabolismo , Oxirredução , Proteômica , Sulfatos , Sulfetos
10.
Microorganisms ; 4(1)2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27681895

RESUMO

Mixed culture anaerobic fermentation generates a wide range of products from simple sugars, and is potentially an effective process for producing renewable commodity chemicals. However it is difficult to predict product spectrum, and to control the process. One of the key control handles is pH, but the response is commonly dependent on culture history. In this work, we assess the impact of pH regulation mode on the product spectrum. Two regulation modes were applied: in the first, pH was adjusted from 4.5 to 8.5 in progressive steps of 0.5 and in the second, covered the same pH range, but the pH was reset to 5.5 before each change. Acetate, butyrate, and ethanol were produced throughout all pH ranges, but there was a shift from butyrate at pH < 6.5 to ethanol at pH > 6.5, as well as a strong and consistent shift from hydrogen to formate as pH increased. Microbial analysis indicated that progressive pH resulted in dominance by Klebsiella, while reset pH resulted in a bias towards Clostridium spp., particularly at low pH, with higher variance in community between different pH levels. Reset pH was more responsive to changes in pH, and analysis of Gibbs free energy indicated that the reset pH experiments operated closer to thermodynamic equilibrium, particularly with respect to the formate/hydrogen balance. This may indicate that periodically resetting pH conforms better to thermodynamic expectations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA