Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 547(7664): 449-452, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28700575

RESUMO

How a sensory stimulus is processed and perceived depends on the surrounding sensory scene. In the visual cortex, contextual signals can be conveyed by an extensive network of intra- and inter-areal excitatory connections that link neurons representing stimulus features separated in visual space. However, the connectional logic of visual contextual inputs remains unknown; it is not clear what information individual neurons receive from different parts of the visual field, nor how this input relates to the visual features that a neuron encodes, defined by its spatial receptive field. Here we determine the organization of excitatory synaptic inputs responding to different locations in the visual scene by mapping spatial receptive fields in dendritic spines of mouse visual cortex neurons using two-photon calcium imaging. We find that neurons receive functionally diverse inputs from extended regions of visual space. Inputs representing similar visual features from the same location in visual space are more likely to cluster on neighbouring spines. Inputs from visual field regions beyond the receptive field of the postsynaptic neuron often synapse on higher-order dendritic branches. These putative long-range inputs are more frequent and more likely to share the preference for oriented edges with the postsynaptic neuron when the receptive field of the input is spatially displaced along the axis of the receptive field orientation of the postsynaptic neuron. Therefore, the connectivity between neurons with displaced receptive fields obeys a specific rule, whereby they connect preferentially when their receptive fields are co-oriented and co-axially aligned. This organization of synaptic connectivity is ideally suited for the amplification of elongated edges, which are enriched in the visual environment, and thus provides a potential substrate for contour integration and object grouping.


Assuntos
Sinapses/fisiologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Animais , Forma Celular , Espinhas Dendríticas/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Visual/citologia
2.
Nature ; 518(7539): 399-403, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25652823

RESUMO

The strength of synaptic connections fundamentally determines how neurons influence each other's firing. Excitatory connection amplitudes between pairs of cortical neurons vary over two orders of magnitude, comprising only very few strong connections among many weaker ones. Although this highly skewed distribution of connection strengths is observed in diverse cortical areas, its functional significance remains unknown: it is not clear how connection strength relates to neuronal response properties, nor how strong and weak inputs contribute to information processing in local microcircuits. Here we reveal that the strength of connections between layer 2/3 (L2/3) pyramidal neurons in mouse primary visual cortex (V1) obeys a simple rule--the few strong connections occur between neurons with most correlated responses, while only weak connections link neurons with uncorrelated responses. Moreover, we show that strong and reciprocal connections occur between cells with similar spatial receptive field structure. Although weak connections far outnumber strong connections, each neuron receives the majority of its local excitation from a small number of strong inputs provided by the few neurons with similar responses to visual features. By dominating recurrent excitation, these infrequent yet powerful inputs disproportionately contribute to feature preference and selectivity. Therefore, our results show that the apparently complex organization of excitatory connection strength reflects the similarity of neuronal responses, and suggest that rare, strong connections mediate stimulus-specific response amplification in cortical microcircuits.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Sinapses/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Vias Neurais , Estimulação Luminosa , Células Piramidais/citologia , Células Piramidais/fisiologia
3.
Nature ; 521(7553): 511-515, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25849776

RESUMO

A large population of neurons can, in principle, produce an astronomical number of distinct firing patterns. In cortex, however, these patterns lie in a space of lower dimension, as if individual neurons were "obedient members of a huge orchestra". Here we use recordings from the visual cortex of mouse (Mus musculus) and monkey (Macaca mulatta) to investigate the relationship between individual neurons and the population, and to establish the underlying circuit mechanisms. We show that neighbouring neurons can differ in their coupling to the overall firing of the population, ranging from strongly coupled 'choristers' to weakly coupled 'soloists'. Population coupling is largely independent of sensory preferences, and it is a fixed cellular attribute, invariant to stimulus conditions. Neurons with high population coupling are more strongly affected by non-sensory behavioural variables such as motor intention. Population coupling reflects a causal relationship, predicting the response of a neuron to optogenetically driven increases in local activity. Moreover, population coupling indicates synaptic connectivity; the population coupling of a neuron, measured in vivo, predicted subsequent in vitro estimates of the number of synapses received from its neighbours. Finally, population coupling provides a compact summary of population activity; knowledge of the population couplings of n neurons predicts a substantial portion of their n(2) pairwise correlations. Population coupling therefore represents a novel, simple measure that characterizes the relationship of each neuron to a larger population, explaining seemingly complex network firing patterns in terms of basic circuit variables.


Assuntos
Neurônios/citologia , Neurônios/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Feminino , Macaca mulatta , Masculino , Camundongos , Modelos Neurológicos , Optogenética , Sinapses/fisiologia
4.
Nature ; 496(7443): 96-100, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23552948

RESUMO

Sensory processing occurs in neocortical microcircuits in which synaptic connectivity is highly structured and excitatory neurons form subnetworks that process related sensory information. However, the developmental mechanisms underlying the formation of functionally organized connectivity in cortical microcircuits remain unknown. Here we directly relate patterns of excitatory synaptic connectivity to visual response properties of neighbouring layer 2/3 pyramidal neurons in mouse visual cortex at different postnatal ages, using two-photon calcium imaging in vivo and multiple whole-cell recordings in vitro. Although neural responses were already highly selective for visual stimuli at eye opening, neurons responding to similar visual features were not yet preferentially connected, indicating that the emergence of feature selectivity does not depend on the precise arrangement of local synaptic connections. After eye opening, local connectivity reorganized extensively: more connections formed selectively between neurons with similar visual responses and connections were eliminated between visually unresponsive neurons, but the overall connectivity rate did not change. We propose a sequential model of cortical microcircuit development based on activity-dependent mechanisms of plasticity whereby neurons first acquire feature preference by selecting feedforward inputs before the onset of sensory experience--a process that may be facilitated by early electrical coupling between neuronal subsets--and then patterned input drives the formation of functional subnetworks through a redistribution of recurrent synaptic connections.


Assuntos
Modelos Neurológicos , Vias Neurais/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Animais Recém-Nascidos , Olho , Pálpebras/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Movimento , Plasticidade Neuronal/fisiologia , Células Piramidais/citologia , Células Piramidais/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Córtex Visual/citologia
5.
PLoS Comput Biol ; 12(6): e1004927, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27348548

RESUMO

Accurate estimation of neuronal receptive fields is essential for understanding sensory processing in the early visual system. Yet a full characterization of receptive fields is still incomplete, especially with regard to natural visual stimuli and in complete populations of cortical neurons. While previous work has incorporated known structural properties of the early visual system, such as lateral connectivity, or imposing simple-cell-like receptive field structure, no study has exploited the fact that nearby V1 neurons share common feed-forward input from thalamus and other upstream cortical neurons. We introduce a new method for estimating receptive fields simultaneously for a population of V1 neurons, using a model-based analysis incorporating knowledge of the feed-forward visual hierarchy. We assume that a population of V1 neurons shares a common pool of thalamic inputs, and consists of two layers of simple and complex-like V1 neurons. When fit to recordings of a local population of mouse layer 2/3 V1 neurons, our model offers an accurate description of their response to natural images and significant improvement of prediction power over the current state-of-the-art methods. We show that the responses of a large local population of V1 neurons with locally diverse receptive fields can be described with surprisingly limited number of thalamic inputs, consistent with recent experimental findings. Our structural model not only offers an improved functional characterization of V1 neurons, but also provides a framework for studying the relationship between connectivity and function in visual cortical areas.


Assuntos
Modelos Neurológicos , Rede Nervosa/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Tálamo/fisiologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Animais , Simulação por Computador , Camundongos , Vias Neurais/fisiologia
6.
Nature ; 473(7345): 87-91, 2011 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21478872

RESUMO

Neuronal connectivity is fundamental to information processing in the brain. Therefore, understanding the mechanisms of sensory processing requires uncovering how connection patterns between neurons relate to their function. On a coarse scale, long-range projections can preferentially link cortical regions with similar responses to sensory stimuli. But on the local scale, where dendrites and axons overlap substantially, the functional specificity of connections remains unknown. Here we determine synaptic connectivity between nearby layer 2/3 pyramidal neurons in vitro, the response properties of which were first characterized in mouse visual cortex in vivo. We found that connection probability was related to the similarity of visually driven neuronal activity. Neurons with the same preference for oriented stimuli connected at twice the rate of neurons with orthogonal orientation preferences. Neurons responding similarly to naturalistic stimuli formed connections at much higher rates than those with uncorrelated responses. Bidirectional synaptic connections were found more frequently between neuronal pairs with strongly correlated visual responses. Our results reveal the degree of functional specificity of local synaptic connections in the visual cortex, and point to the existence of fine-scale subnetworks dedicated to processing related sensory information.


Assuntos
Sinapses Elétricas/fisiologia , Rede Nervosa/fisiologia , Córtex Visual/fisiologia , Animais , Cálcio/química , Sinalização do Cálcio/fisiologia , Simulação por Computador , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Estimulação Luminosa , Células Piramidais/fisiologia
7.
J Neurosci ; 34(29): 9812-6, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25031418

RESUMO

In primary visual cortex (V1), connectivity between layer 2/3 (L2/3) excitatory neurons undergoes extensive reorganization after the onset of visual experience whereby neurons with similar feature selectivity form functional microcircuits (Ko et al., 2011, 2013). It remains unknown whether visual experience is required for the developmental refinement of intracortical circuitry or whether this maturation is guided intrinsically. Here, we correlated the connectivity between V1 L2/3 neurons assayed by simultaneous whole-cell recordings in vitro to their response properties measured by two-photon calcium imaging in vivo in dark-reared mice. We found that neurons with similar responses to oriented gratings or natural movies became preferentially connected in the absence of visual experience. However, the relationship between connectivity and similarity of visual responses to natural movies was not as strong in dark-reared as in normally reared mice. Moreover, dark rearing prevented the normally occurring loss of connections between visually nonresponsive neurons after eye opening (Ko et al., 2013). Therefore, our data suggest that the absence of visual input does not prevent the emergence of functionally specific recurrent connectivity in cortical circuits; however, visual experience is required for complete microcircuit maturation.


Assuntos
Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Potenciais de Ação/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Adaptação à Escuridão/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Orientação/fisiologia , Técnicas de Patch-Clamp , Estimulação Luminosa , Córtex Visual/citologia
8.
Nature ; 457(7227): 313-7, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19005470

RESUMO

Sensory experiences exert a powerful influence on the function and future performance of neuronal circuits in the mammalian neocortex. Restructuring of synaptic connections is believed to be one mechanism by which cortical circuits store information about the sensory world. Excitatory synaptic structures, such as dendritic spines, are dynamic entities that remain sensitive to alteration of sensory input throughout life. It remains unclear, however, whether structural changes at the level of dendritic spines can outlast the original experience and thereby provide a morphological basis for long-term information storage. Here we follow spine dynamics on apical dendrites of pyramidal neurons in functionally defined regions of adult mouse visual cortex during plasticity of eye-specific responses induced by repeated closure of one eye (monocular deprivation). The first monocular deprivation episode doubled the rate of spine formation, thereby increasing spine density. This effect was specific to layer-5 cells located in binocular cortex, where most neurons increase their responsiveness to the non-deprived eye. Restoring binocular vision returned spine dynamics to baseline levels, but absolute spine density remained elevated and many monocular deprivation-induced spines persisted during this period of functional recovery. However, spine addition did not increase again when the same eye was closed for a second time. This absence of structural plasticity stands out against the robust changes of eye-specific responses that occur even faster after repeated deprivation. Thus, spines added during the first monocular deprivation experience may provide a structural basis for subsequent functional shifts. These results provide a strong link between functional plasticity and specific synaptic rearrangements, revealing a mechanism of how prior experiences could be stored in cortical circuits.


Assuntos
Dendritos/fisiologia , Vias Neurais/fisiologia , Células Piramidais/citologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Visão Binocular/fisiologia , Visão Monocular/fisiologia
9.
Neuron ; 112(6): 991-1000.e8, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38244539

RESUMO

In the neocortex, neural activity is shaped by the interaction of excitatory and inhibitory neurons, defined by the organization of their synaptic connections. Although connections among excitatory pyramidal neurons are sparse and functionally tuned, inhibitory connectivity is thought to be dense and largely unstructured. By measuring in vivo visual responses and synaptic connectivity of parvalbumin-expressing (PV+) inhibitory cells in mouse primary visual cortex, we show that the synaptic weights of their connections to nearby pyramidal neurons are specifically tuned according to the similarity of the cells' responses. Individual PV+ cells strongly inhibit those pyramidal cells that provide them with strong excitation and share their visual selectivity. This structured organization of inhibitory synaptic weights provides a circuit mechanism for tuned inhibition onto pyramidal cells despite dense connectivity, stabilizing activity within feature-specific excitatory ensembles while supporting competition between them.


Assuntos
Neocórtex , Córtex Visual , Camundongos , Animais , Sinapses/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Córtex Visual/fisiologia , Inibição Neural/fisiologia
10.
Neuron ; 111(1): 106-120.e10, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36283408

RESUMO

Adaptive sensory behavior is thought to depend on processing in recurrent cortical circuits, but how dynamics in these circuits shapes the integration and transmission of sensory information is not well understood. Here, we study neural coding in recurrently connected networks of neurons driven by sensory input. We show analytically how information available in the network output varies with the alignment between feedforward input and the integrating modes of the circuit dynamics. In light of this theory, we analyzed neural population activity in the visual cortex of mice that learned to discriminate visual features. We found that over learning, slow patterns of network dynamics realigned to better integrate input relevant to the discrimination task. This realignment of network dynamics could be explained by changes in excitatory-inhibitory connectivity among neurons tuned to relevant features. These results suggest that learning tunes the temporal dynamics of cortical circuits to optimally integrate relevant sensory input.


Assuntos
Aprendizagem , Córtex Visual , Camundongos , Animais , Neurônios/fisiologia , Córtex Visual/fisiologia , Vias Neurais/fisiologia , Rede Nervosa/fisiologia , Modelos Neurológicos
11.
Neuron ; 110(15): 2470-2483.e7, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35690063

RESUMO

Processing of sensory information depends on the interactions between hierarchically connected neocortical regions, but it remains unclear how the activity in one area causally influences the activity dynamics in another and how rapidly such interactions change with time. Here, we show that the communication between the primary visual cortex (V1) and high-order visual area LM is context-dependent and surprisingly dynamic over time. By momentarily silencing one area while recording activity in the other, we find that both areas reliably affected changing subpopulations of target neurons within one hundred milliseconds while mice observed a visual stimulus. The influence of LM feedback on V1 responses became even more dynamic when the visual stimuli predicted a reward, causing fast changes in the geometry of V1 population activity and affecting stimulus coding in a context-dependent manner. Therefore, the functional interactions between cortical areas are not static but unfold through rapidly shifting communication subspaces whose dynamics depend on context when processing sensory information.


Assuntos
Neocórtex , Córtex Visual , Animais , Camundongos , Neurônios/fisiologia , Estimulação Luminosa , Córtex Visual/fisiologia , Percepção Visual/fisiologia
12.
Neuron ; 110(17): 2728-2742, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36076337

RESUMO

Prethalamic nuclei in the mammalian brain include the zona incerta, the ventral lateral geniculate nucleus, and the intergeniculate leaflet, which provide long-range inhibition to many targets in the midbrain, hindbrain, and thalamus. These nuclei in the caudal prethalamus can integrate sensory and non-sensory information, and together they exert powerful inhibitory control over a wide range of brain functions and behaviors that encompass most aspects of the behavioral repertoire of mammals, including sleep, circadian rhythms, feeding, drinking, predator avoidance, and exploration. In this perspective, we highlight the evidence for this wide-ranging control and lay out the hypothesis that one role of caudal prethalamic nuclei may be that of a behavioral switchboard that-depending on the sensory input, the behavioral context, and the state of the animal-can promote a behavioral strategy and suppress alternative, competing behaviors by modulating inhibitory drive onto diverse target areas.


Assuntos
Controle Comportamental , Corpos Geniculados , Animais , Ritmo Circadiano , Corpos Geniculados/fisiologia , Mamíferos , Mesencéfalo , Tálamo
13.
Neuron ; 110(4): 686-697.e6, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34906356

RESUMO

Selectivity of cortical neurons for sensory stimuli can increase across days as animals learn their behavioral relevance and across seconds when animals switch attention. While both phenomena occur in the same circuit, it is unknown whether they rely on similar mechanisms. We imaged primary visual cortex as mice learned a visual discrimination task and subsequently performed an attention switching task. Selectivity changes due to learning and attention were uncorrelated in individual neurons. Selectivity increases after learning mainly arose from selective suppression of responses to one of the stimuli but from selective enhancement and suppression during attention. Learning and attention differentially affected interactions between excitatory and PV, SOM, and VIP inhibitory cells. Circuit modeling revealed that cell class-specific top-down inputs best explained attentional modulation, while reorganization of local functional connectivity accounted for learning-related changes. Thus, distinct mechanisms underlie increased discriminability of relevant sensory stimuli across longer and shorter timescales.


Assuntos
Atenção , Aprendizagem , Animais , Atenção/fisiologia , Discriminação Psicológica , Aprendizagem/fisiologia , Camundongos , Neurônios/fisiologia , Percepção Visual/fisiologia
14.
Neuron ; 54(6): 961-72, 2007 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-17582335

RESUMO

Experience-dependent plasticity is crucial for the precise formation of neuronal connections during development. It is generally thought to depend on Hebbian forms of synaptic plasticity. In addition, neurons possess other, homeostatic means of compensating for changes in sensory input, but their role in cortical plasticity is unclear. We used two-photon calcium imaging to investigate whether homeostatic response regulation contributes to changes of eye-specific responsiveness after monocular deprivation (MD) in mouse visual cortex. Short MD durations decreased deprived-eye responses in neurons with binocular input. Longer MD periods strengthened open-eye responses, and surprisingly, also increased deprived-eye responses in neurons devoid of open-eye input. These bidirectional response adjustments effectively preserved the net visual drive for each neuron. Our finding that deprived-eye responses were either weaker or stronger after MD, depending on the amount of open-eye input a cell received, argues for both Hebbian and homeostatic mechanisms regulating neuronal responsiveness during experience-dependent plasticity.


Assuntos
Dominância Ocular , Olho/inervação , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Córtex Visual/citologia , Potenciais de Ação/efeitos da radiação , Animais , Animais Recém-Nascidos , Mapeamento Encefálico , Cálcio/metabolismo , Pálpebras/inervação , Pálpebras/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa/métodos , Privação Sensorial/fisiologia , Fatores de Tempo , Visão Binocular/fisiologia , Visão Monocular/fisiologia , Vias Visuais/fisiologia
15.
Neuron ; 109(12): 1996-2008.e6, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33979633

RESUMO

Sensory processing involves information flow between neocortical areas, assumed to rely on direct intracortical projections. However, cortical areas may also communicate indirectly via higher-order nuclei in the thalamus, such as the pulvinar or lateral posterior nucleus (LP) in the visual system of rodents. The fine-scale organization and function of these cortico-thalamo-cortical pathways remains unclear. We find that responses of mouse LP neurons projecting to higher visual areas likely derive from feedforward input from primary visual cortex (V1) combined with information from many cortical and subcortical areas, including superior colliculus. Signals from LP projections to different higher visual areas are tuned to specific features of visual stimuli and their locomotor context, distinct from the signals carried by direct intracortical projections from V1. Thus, visual transthalamic pathways are functionally specific to their cortical target, different from feedforward cortical pathways, and combine information from multiple brain regions, linking sensory signals with behavioral context.


Assuntos
Núcleos Laterais do Tálamo/fisiologia , Neurônios/fisiologia , Pulvinar/fisiologia , Tálamo/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Córtex Cerebral/fisiologia , Locomoção/fisiologia , Camundongos , Estimulação Luminosa , Colículos Superiores/fisiologia
16.
Neuron ; 109(23): 3810-3822.e9, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614420

RESUMO

Animals can choose to act upon, or to ignore, sensory stimuli, depending on circumstance and prior knowledge. This flexibility is thought to depend on neural inhibition, through suppression of inappropriate and disinhibition of appropriate actions. Here, we identified the ventral lateral geniculate nucleus (vLGN), an inhibitory prethalamic area, as a critical node for control of visually evoked defensive responses in mice. The activity of vLGN projections to the medial superior colliculus (mSC) is modulated by previous experience of threatening stimuli, tracks the perceived threat level in the environment, and is low prior to escape from a visual threat. Optogenetic stimulation of the vLGN abolishes escape responses, and suppressing its activity lowers the threshold for escape and increases risk-avoidance behavior. The vLGN most strongly affects visual threat responses, potentially via modality-specific inhibition of mSC circuits. Thus, inhibitory vLGN circuits control defensive behavior, depending on an animal's prior experience and its anticipation of danger in the environment.


Assuntos
Corpos Geniculados , Vias Visuais , Animais , Corpos Geniculados/fisiologia , Camundongos , Formação Reticular , Colículos Superiores/fisiologia , Transmissão Sináptica , Vias Visuais/fisiologia
17.
Nat Neurosci ; 24(9): 1324-1337, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34341584

RESUMO

Inference of action potentials ('spikes') from neuronal calcium signals is complicated by the scarcity of simultaneous measurements of action potentials and calcium signals ('ground truth'). In this study, we compiled a large, diverse ground truth database from publicly available and newly performed recordings in zebrafish and mice covering a broad range of calcium indicators, cell types and signal-to-noise ratios, comprising a total of more than 35 recording hours from 298 neurons. We developed an algorithm for spike inference (termed CASCADE) that is based on supervised deep networks, takes advantage of the ground truth database, infers absolute spike rates and outperforms existing model-based algorithms. To optimize performance for unseen imaging data, CASCADE retrains itself by resampling ground truth data to match the respective sampling rate and noise level; therefore, no parameters need to be adjusted by the user. In addition, we developed systematic performance assessments for unseen data, openly released a resource toolbox and provide a user-friendly cloud-based implementation.


Assuntos
Artefatos , Encéfalo/fisiologia , Aprendizado Profundo , Neuroimagem/métodos , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Bases de Dados Factuais , Camundongos , Modelos Neurológicos , Peixe-Zebra
18.
Elife ; 102021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34011433

RESUMO

Progress in science requires standardized assays whose results can be readily shared, compared, and reproduced across laboratories. Reproducibility, however, has been a concern in neuroscience, particularly for measurements of mouse behavior. Here, we show that a standardized task to probe decision-making in mice produces reproducible results across multiple laboratories. We adopted a task for head-fixed mice that assays perceptual and value-based decision making, and we standardized training protocol and experimental hardware, software, and procedures. We trained 140 mice across seven laboratories in three countries, and we collected 5 million mouse choices into a publicly available database. Learning speed was variable across mice and laboratories, but once training was complete there were no significant differences in behavior across laboratories. Mice in different laboratories adopted similar reliance on visual stimuli, on past successes and failures, and on estimates of stimulus prior probability to guide their choices. These results reveal that a complex mouse behavior can be reproduced across multiple laboratories. They establish a standard for reproducible rodent behavior, and provide an unprecedented dataset and open-access tools to study decision-making in mice. More generally, they indicate a path toward achieving reproducibility in neuroscience through collaborative open-science approaches.


In science, it is of vital importance that multiple studies corroborate the same result. Researchers therefore need to know all the details of previous experiments in order to implement the procedures as exactly as possible. However, this is becoming a major problem in neuroscience, as animal studies of behavior have proven to be hard to reproduce, and most experiments are never replicated by other laboratories. Mice are increasingly being used to study the neural mechanisms of decision making, taking advantage of the genetic, imaging and physiological tools that are available for mouse brains. Yet, the lack of standardized behavioral assays is leading to inconsistent results between laboratories. This makes it challenging to carry out large-scale collaborations which have led to massive breakthroughs in other fields such as physics and genetics. To help make these studies more reproducible, the International Brain Laboratory (a collaborative research group) et al. developed a standardized approach for investigating decision making in mice that incorporates every step of the process; from the training protocol to the software used to analyze the data. In the experiment, mice were shown images with different contrast and had to indicate, using a steering wheel, whether it appeared on their right or left. The mice then received a drop of sugar water for every correction decision. When the image contrast was high, mice could rely on their vision. However, when the image contrast was very low or zero, they needed to consider the information of previous trials and choose the side that had recently appeared more frequently. This method was used to train 140 mice in seven laboratories from three different countries. The results showed that learning speed was different across mice and laboratories, but once training was complete the mice behaved consistently, relying on visual stimuli or experiences to guide their choices in a similar way. These results show that complex behaviors in mice can be reproduced across multiple laboratories, providing an unprecedented dataset and open-access tools for studying decision making. This work could serve as a foundation for other groups, paving the way to a more collaborative approach in the field of neuroscience that could help to tackle complex research challenges.


Assuntos
Comportamento Animal , Pesquisa Biomédica/normas , Tomada de Decisões , Neurociências/normas , Animais , Sinais (Psicologia) , Feminino , Aprendizagem , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais , Variações Dependentes do Observador , Estimulação Luminosa , Reprodutibilidade dos Testes , Fatores de Tempo , Percepção Visual
19.
Nat Neurosci ; 9(1): 127-32, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16327785

RESUMO

The brain has a remarkable capacity to adapt to alterations in its sensory environment, which is normally much more pronounced in juvenile animals. Here we show that in adult mice, the ability to adapt to changes can be improved profoundly if the mouse has already experienced a similar change in its sensory environment earlier in life. Using the standard model for sensory plasticity in mouse visual cortex-ocular dominance (OD) plasticity-we found that a transient shift in OD, induced by monocular deprivation (MD) earlier in life, renders the adult visual cortex highly susceptible to subsequent MD many weeks later. Irrespective of whether the first MD was experienced during the critical period (around postnatal day 28) or in adulthood, OD shifts induced by a second MD were faster, more persistent and specific to repeated deprivation of the same eye. The capacity for plasticity in the mammalian cortex can therefore be conditioned by past experience.


Assuntos
Plasticidade Neuronal/fisiologia , Visão Ocular/fisiologia , Córtex Visual/fisiologia , Envelhecimento/fisiologia , Animais , Mapeamento Encefálico , Interpretação Estatística de Dados , Dominância Ocular/fisiologia , Eletrofisiologia , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Retina/fisiologia , Visão Binocular/fisiologia , Visão Monocular/fisiologia
20.
Curr Opin Neurobiol ; 16(4): 451-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16837188

RESUMO

Ocular dominance plasticity has long served as a successful model for examining how cortical circuits are shaped by experience. In this paradigm, altered retinal activity caused by unilateral eye-lid closure leads to dramatic shifts in the binocular response properties of neurons in the visual cortex. Much of the recent progress in identifying the cellular and molecular mechanisms underlying ocular dominance plasticity has been achieved by using the mouse as a model system. In this species, monocular deprivation initiated in adulthood also causes robust ocular dominance shifts. Research on ocular dominance plasticity in the mouse is starting to provide insight into which factors mediate and influence cortical plasticity in juvenile and adult animals.


Assuntos
Dominância Ocular/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Visual/crescimento & desenvolvimento , Vias Visuais/fisiologia , Animais , Dendritos/fisiologia , Corpos Geniculados/crescimento & desenvolvimento , Corpos Geniculados/fisiologia , Camundongos , Inibição Neural/fisiologia , Privação Sensorial/fisiologia , Transmissão Sináptica/fisiologia , Córtex Visual/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA