Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Nat Mater ; 22(3): 369-379, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36443576

RESUMO

Messenger RNA has now been used to vaccinate millions of people. However, the diversity of pulmonary pathologies, including infections, genetic disorders, asthma and others, reveals the lung as an important organ to directly target for future RNA therapeutics and preventatives. Here we report the screening of 166 polymeric nanoparticle formulations for functional delivery to the lungs, obtained from a combinatorial synthesis approach combined with a low-dead-volume nose-only inhalation system for mice. We identify P76, a poly-ß-amino-thio-ester polymer, that exhibits increased expression over formulations lacking the thiol component, delivery to different animal species with varying RNA cargos and low toxicity. P76 allows for dose sparing when delivering an mRNA-expressed Cas13a-mediated treatment in a SARS-CoV-2 challenge model, resulting in similar efficacy to a 20-fold higher dose of a neutralizing antibody. Overall, the combinatorial synthesis approach allowed for the discovery of promising polymeric formulations for future RNA pharmaceutical development for the lungs.


Assuntos
COVID-19 , Animais , Camundongos , RNA Mensageiro/genética , SARS-CoV-2/genética , Polímeros/metabolismo , Pulmão , RNA/metabolismo
2.
Food Microbiol ; 107: 104084, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35953178

RESUMO

The potential transmission of SARS-CoV-2 via food has been controversial since the beginning of the COVID-19 pandemic. To investigate these concerns, reliable detection methods and data on virus die-off rates in various foods are needed. Here, an FDA-standard method for the detection of enteric viruses' RNA from soft fruits was modified for the recovery of infectious SARS-CoV-2. Then, the survival of SARS-CoV-2 on berries was investigated as well as the effectiveness of washing virus-contaminated berries with water. The modified method did not significantly reduced log infectivity titers of recovered viruses, but berries did. The detection limit of the method for infectious SARS-CoV-2 was ∼2.97 log TCID50/g of berries. On SARS-CoV-2-inoculated berries that were stored at 4 °C for 7 days, significant reductions in SARS-CoV-2 infectivity were observed over time. In contrast, on frozen berries, infectious SARS-CoV-2 was recovered for 28 days without significant reductions. Washing SARS-CoV-2-inoculated berries with water removed >90% of infectious viruses within 10 min; however, infectious viruses were detected in wash water. Therefore, on fresh berries infectious viruses are markedly inactivated over time and can be largely removed by washing with water. However, the prolonged survival of SARS-CoV-2 on frozen berries suggests that the virus can potentially spread through frozen fruits.


Assuntos
COVID-19 , Vírus , Frutas , Humanos , Pandemias , SARS-CoV-2/genética , Água
3.
Vet Pathol ; 55(2): 258-267, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29145795

RESUMO

Burkholderia mallei causes the highly contagious and debilitating zoonosis glanders, which infects via inhalation or percutaneous inoculation and often culminates in life-threatening pneumonia and sepsis. In humans, glanders is difficult to diagnose and requires prolonged antibiotic therapy with low success rates. No vaccine exists to protect against B. mallei, and there is concern regarding its use as a bioweapon. The authors previously identified the protein BpaB as a potential target for devising therapies due to its role in adherence to host cells and the formation of biofilms in vitro and its contribution to pathogenicity in a mouse model of glanders. In the present study, the authors developed an immunostaining approach to probe tissues of experimentally infected animals and demonstrated that BpaB is produced exclusively in vivo by wild-type B. mallei in target organs from mice and marmosets. They detected the expression of BpaB by B. mallei both extracellularly and within macrophages, neutrophils, and epithelial cells in respiratory tissues (7/10 marmoset; 2/2 mouse). The authors also noted the intracellular expression of BpaB by B. mallei in macrophages in the regional lymph nodes of mice (2/2 tissues) and MALT of marmosets (4/5 tissues). It is interesting that B. mallei bacteria infecting distal organs did not express BpaB (2/2 mice; 3/3 marmosets), suggesting that the protein is not necessary for bacterial fitness in these anatomic locations. These findings underscore the value of BpaB as a target for developing medical countermeasures and provide insight into its role in pathogenesis.


Assuntos
Burkholderia mallei/patogenicidade , Mormo/microbiologia , Fatores de Virulência/metabolismo , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Burkholderia mallei/imunologia , Burkholderia mallei/metabolismo , Callithrix/microbiologia , Mormo/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Virulência/imunologia
4.
Proc Natl Acad Sci U S A ; 112(40): 12504-9, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26392524

RESUMO

Paramyxoviruses include many important animal and human pathogens. Most paramyxoviruses have two integral membrane proteins: fusion protein (F) and attachment proteins hemagglutinin, hemagglutinin-neuraminidase, or glycoprotein (G), which are critical for viral entry into cells. J paramyxovirus (JPV) encodes four integral membrane proteins: F, G, SH, and transmembrane (TM). The function of TM is not known. In this work, we have generated a viable JPV lacking TM (JPV∆TM). JPV∆TM formed opaque plaques compared with JPV. Quantitative syncytia assays showed that JPV∆TM was defective in promoting cell-to-cell fusion (i.e., syncytia formation) compared with JPV. Furthermore, cells separately expressing F, G, TM, or F plus G did not form syncytia whereas cells expressing F plus TM formed some syncytia. However, syncytia formation was much greater with coexpression of F, G, and TM. Biochemical analysis indicates that F, G, and TM interact with each other. A small hydrophobic region in the TM ectodomain from amino acid residues 118 to 132, the hydrophobic loop (HL), was important for syncytial promotion, suggesting that the TM HL region plays a critical role in cell-to-cell fusion.


Assuntos
Proteínas de Membrana/genética , Mutação , Paramyxovirinae/genética , Proteínas Virais/genética , Animais , Fusão Celular , Linhagem Celular , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Imunofluorescência , Células Gigantes/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Paramyxovirinae/crescimento & desenvolvimento , Paramyxovirinae/metabolismo , Ligação Proteica , Células Vero , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Ensaio de Placa Viral , Proteínas Virais/metabolismo
5.
Infect Immun ; 85(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28507073

RESUMO

Burkholderia mallei, a facultative intracellular bacterium and tier 1 biothreat, causes the fatal zoonotic disease glanders. The organism possesses multiple genes encoding autotransporter proteins, which represent important virulence factors and targets for developing countermeasures in pathogenic Gram-negative bacteria. In the present study, we investigated one of these autotransporters, BatA, and demonstrate that it displays lipolytic activity, aids in intracellular survival, is expressed in vivo, elicits production of antibodies during infection, and contributes to pathogenicity in a mouse aerosol challenge model. A mutation in the batA gene of wild-type strain ATCC 23344 was found to be particularly attenuating, as BALB/c mice infected with the equivalent of 80 median lethal doses cleared the organism. This finding prompted us to test the hypothesis that vaccination with the batA mutant strain elicits protective immunity against subsequent infection with wild-type bacteria. We discovered that not only does vaccination provide high levels of protection against lethal aerosol challenge with B. mallei ATCC 23344, it also protects against infection with multiple isolates of the closely related organism and causative agent of melioidosis, Burkholderia pseudomallei Passive-transfer experiments also revealed that the protective immunity afforded by vaccination with the batA mutant strain is predominantly mediated by IgG antibodies binding to antigens expressed exclusively in vivo Collectively, our data demonstrate that BatA is a target for developing medical countermeasures and that vaccination with a mutant lacking expression of the protein provides a platform to gain insights regarding mechanisms of protective immunity against B. mallei and B. pseudomallei, including antigen discovery.


Assuntos
Anticorpos Antibacterianos/imunologia , Burkholderia mallei/imunologia , Burkholderia pseudomallei/imunologia , Melioidose/prevenção & controle , Animais , Proteínas de Bactérias/genética , Burkholderia mallei/genética , Burkholderia mallei/crescimento & desenvolvimento , Burkholderia mallei/patogenicidade , Burkholderia pseudomallei/patogenicidade , Modelos Animais de Doenças , Mormo/imunologia , Mormo/microbiologia , Mormo/prevenção & controle , Imunoglobulina G/imunologia , Melioidose/imunologia , Melioidose/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Vacinação , Fatores de Virulência/genética
6.
Nature ; 470(7335): 543-7, 2011 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21350488

RESUMO

Many successful vaccines induce persistent antibody responses that can last a lifetime. The mechanisms by which they do so remain unclear, but emerging evidence indicates that they activate dendritic cells via Toll-like receptors (TLRs). For example, the yellow fever vaccine YF-17D, one of the most successful empiric vaccines ever developed, activates dendritic cells via multiple TLRs to stimulate proinflammatory cytokines. Triggering specific combinations of TLRs in dendritic cells can induce synergistic production of cytokines, which results in enhanced T-cell responses, but its impact on antibody responses remain unknown. Learning the critical parameters of innate immunity that program such antibody responses remains a major challenge in vaccinology. Here we demonstrate that immunization of mice with synthetic nanoparticles containing antigens plus ligands that signal through TLR4 and TLR7 induces synergistic increases in antigen-specific, neutralizing antibodies compared to immunization with nanoparticles containing antigens plus a single TLR ligand. Consistent with this there was enhanced persistence of germinal centres and of plasma-cell responses, which persisted in the lymph nodes for >1.5 years. Surprisingly, there was no enhancement of the early short-lived plasma-cell response relative to that observed with single TLR ligands. Molecular profiling of activated B cells, isolated 7 days after immunization, indicated that there was early programming towards B-cell memory. Antibody responses were dependent on direct triggering of both TLRs on B cells and dendritic cells, as well as on T-cell help. Immunization protected completely against lethal avian and swine influenza virus strains in mice, and induced robust immunity against pandemic H1N1 influenza in rhesus macaques.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Vacinas contra Influenza/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Células Dendríticas/citologia , Células Dendríticas/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/administração & dosagem , Ácido Láctico , Ligantes , Linfonodos/citologia , Linfonodos/imunologia , Ativação Linfocitária , Macaca mulatta/imunologia , Macaca mulatta/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Plasmócitos/citologia , Plasmócitos/imunologia , Plasmócitos/metabolismo , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Linfócitos T/imunologia , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo
7.
J Virol ; 87(1): 354-62, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23077314

RESUMO

A safe and effective vaccine is the best way to prevent large-scale highly pathogenic avian influenza virus (HPAI) H5N1 outbreaks in the human population. The current FDA-approved H5N1 vaccine has serious limitations. A more efficacious H5N1 vaccine is urgently needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, is not known to cause any illness in humans. PIV5 is an attractive vaccine vector. In our studies, a single dose of a live recombinant PIV5 expressing a hemagglutinin (HA) gene of H5N1 (rPIV5-H5) from the H5N1 subtype provided sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. Furthermore, we have examined the effect of insertion of H5N1 HA at different locations within the PIV5 genome on the efficacy of a PIV5-based vaccine. Interestingly, insertion of H5N1 HA between the leader sequence, the de facto promoter of PIV5, and the first viral gene, nucleoprotein (NP), did not lead to a viable virus. Insertion of H5N1 HA between NP and the next gene, V/phosphorprotein (V/P), led to a virus that was defective in growth. We have found that insertion of H5N1 HA at the junction between the small hydrophobic (SH) gene and the hemagglutinin-neuraminidase (HN) gene gave the best immunity against HPAI H5N1 challenge: a dose as low as 1,000 PFU was sufficient to protect against lethal HPAI H5N1 challenge in mice. The work suggests that recombinant PIV5 expressing H5N1 HA has great potential as an HPAI H5N1 vaccine.


Assuntos
Vetores Genéticos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Paramyxoviridae/genética , Animais , Modelos Animais de Doenças , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virus da Influenza A Subtipo H5N1/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Insercional , Infecções por Orthomyxoviridae/imunologia , Recombinação Genética , Análise de Sobrevida , Vacinação/métodos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
8.
J Virol ; 87(14): 8158-68, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23678169

RESUMO

In recent years, many mumps outbreaks have occurred in vaccinated populations worldwide. The reasons for these outbreaks are not clear. Animal models are needed to investigate the causes of outbreaks and to understand the pathogenesis of mumps virus (MuV). In this study, we have examined the infection of three animal models with an isolate of mumps virus from a recent outbreak (MuV-IA). We have found that while both ferrets and mice generated humoral and cellular immune responses to MuV-IA infection, no obvious signs of illness were observed in these animals; rhesus macaques were the most susceptible to MuV-IA infection. Infection of rhesus macaques via both intranasal and intratracheal routes with MuV-IA led to the typical clinical signs of mumps 2 weeks to 4 weeks postinfection. However, none of the infected macaques showed any fever or neurologic signs during the experimental period. Mumps viral antigen was detected in parotid glands by immunohistochemistry (IHC). Rhesus macaques represent the best animal model for the study of mumps virus pathogenesis.


Assuntos
Modelos Animais de Doenças , Macaca mulatta , Vírus da Caxumba/patogenicidade , Caxumba/imunologia , Caxumba/fisiopatologia , Animais , Chlorocebus aethiops , Ensaio de Imunoadsorção Enzimática , Furões , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Caxumba/virologia , Testes de Neutralização , Glândula Parótida/virologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Células Vero
9.
BMC Microbiol ; 14: 92, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24731253

RESUMO

BACKGROUND: Autotransporters form a large family of outer membrane proteins specifying diverse biological traits of Gram-negative bacteria. In this study, we report the identification and characterization of a novel autotransporter gene product of Burkholderia mallei (locus tag BMA1027 in strain ATCC 23344). RESULTS: Database searches identified the gene in at least seven B. mallei isolates and the encoded proteins were found to be 84% identical. Inactivation of the gene encoding the autotransporter in the genome of strain ATCC 23344 substantially reduces adherence to monolayers of HEp-2 laryngeal cells and A549 type II pneumocytes, as well as to cultures of normal human bronchial epithelium (NHBE). Consistent with these findings, expression of the autotransporter on the surface of recombinant E. coli bacteria increases adherence to these cell types by 5-7 fold. The gene specifying the autotransporter was identified in the genome of 29 B. pseudomallei isolates and disruption of the gene in strain DD503 reduced adherence to NHBE cultures by 61%. Unlike B. mallei, the mutation did not impair binding of B. pseudomallei to A549 or HEp-2 cells. Analysis of sera from mice infected via the aerosol route with B. mallei and B. pseudomallei revealed that animals inoculated with as few as 10 organisms produce antibodies against the autotransporter, therefore indicating expression in vivo. CONCLUSIONS: Our data demonstrate that we have identified an autotransporter protein common to the pathogenic species B. mallei and B. pseudomallei which mediates adherence to respiratory epithelial cells and is expressed in vivo during the course of aerosol infection.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Burkholderia mallei/fisiologia , Burkholderia pseudomallei/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Adesinas Bacterianas/genética , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Burkholderia mallei/genética , Burkholderia pseudomallei/genética , Células Epiteliais/microbiologia , Escherichia coli/genética , Escherichia coli/fisiologia , Feminino , Deleção de Genes , Expressão Gênica , Humanos , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Viruses ; 16(1)2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275962

RESUMO

Avian influenza (AI) viruses cause infection in birds and humans. Several H5N1 and H7N9 variants are highly pathogenic avian influenza (HPAI) viruses. H5N1 is a highly infectious bird virus infecting primarily poultry, but unlike other AIs, H5N1 also infects mammals and transmits to humans with a case fatality rate above 40%. Similarly, H7N9 can infect humans, with a case fatality rate of over 40%. Since 1996, there have been several HPAI outbreaks affecting humans, emphasizing the need for safe and effective antivirals. We show that probenecid potently inhibits H5N1 and H7N9 replication in prophylactically or therapeutically treated A549 cells and normal human broncho-epithelial (NHBE) cells, and H5N1 replication in VeroE6 cells and mice.


Assuntos
Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , Humanos , Camundongos , Influenza Aviária/tratamento farmacológico , Influenza Aviária/prevenção & controle , Influenza Aviária/epidemiologia , Subtipo H7N9 do Vírus da Influenza A/genética , Probenecid , Aves , Mamíferos
11.
Cell Stem Cell ; 31(5): 734-753.e8, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38608707

RESUMO

Autonomic parasympathetic neurons (parasymNs) control unconscious body responses, including "rest-and-digest." ParasymN innervation is important for organ development, and parasymN dysfunction is a hallmark of autonomic neuropathy. However, parasymN function and dysfunction in humans are vastly understudied due to the lack of a model system. Human pluripotent stem cell (hPSC)-derived neurons can fill this void as a versatile platform. Here, we developed a differentiation paradigm detailing the derivation of functional human parasymNs from Schwann cell progenitors. We employ these neurons (1) to assess human autonomic nervous system (ANS) development, (2) to model neuropathy in the genetic disorder familial dysautonomia (FD), (3) to show parasymN dysfunction during SARS-CoV-2 infection, (4) to model the autoimmune disease Sjögren's syndrome (SS), and (5) to show that parasymNs innervate white adipocytes (WATs) during development and promote WAT maturation. Our model system could become instrumental for future disease modeling and drug discovery studies, as well as for human developmental studies.


Assuntos
Diferenciação Celular , Disautonomia Familiar , Células-Tronco Pluripotentes , Humanos , Células-Tronco Pluripotentes/citologia , Disautonomia Familiar/patologia , Neurônios , Síndrome de Sjogren/patologia , COVID-19/virologia , COVID-19/patologia , Animais , Sistema Nervoso Parassimpático , Células de Schwann , Camundongos , SARS-CoV-2/fisiologia
12.
Open Biol ; 14(6): 230363, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889796

RESUMO

We present a novel small molecule antiviral chemotype that was identified by an unconventional cell-free protein synthesis and assembly-based phenotypic screen for modulation of viral capsid assembly. Activity of PAV-431, a representative compound from the series, has been validated against infectious viruses in multiple cell culture models for all six families of viruses causing most respiratory diseases in humans. In animals, this chemotype has been demonstrated efficacious for porcine epidemic diarrhoea virus (a coronavirus) and respiratory syncytial virus (a paramyxovirus). PAV-431 is shown to bind to the protein 14-3-3, a known allosteric modulator. However, it only appears to target the small subset of 14-3-3 which is present in a dynamic multi-protein complex whose components include proteins implicated in viral life cycles and in innate immunity. The composition of this target multi-protein complex appears to be modified upon viral infection and largely restored by PAV-431 treatment. An advanced analog, PAV-104, is shown to be selective for the virally modified target, thereby avoiding host toxicity. Our findings suggest a new paradigm for understanding, and drugging, the host-virus interface, which leads to a new clinical therapeutic strategy for treatment of respiratory viral disease.


Assuntos
Antivirais , Antivirais/farmacologia , Antivirais/química , Humanos , Animais , Proteínas 14-3-3/metabolismo , Complexos Multiproteicos/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Linhagem Celular
13.
J Virol ; 85(4): 1634-44, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21106736

RESUMO

Our previous studies indicated that recruitment and/or activation of dendritic cells (DCs) is important in enhancing the protective immune responses against rabies virus (RABV) (L. Zhao, H. Toriumi, H. Wang, Y. Kuang, X. Guo, K. Morimoto, and Z. F. Fu, J. Virol. 84:9642-9648). To address the importance of DC activation for RABV vaccine efficacy, the genes for several DC recruitment and/or activation molecules, e.g., granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage-derived chemokine (MDC), and macrophage inflammatory protein 1α (MIP-1α), were individually cloned into RABV. The ability of these recombinant viruses to activate DCs was determined in vitro and in vivo. Infection of mouse bone marrow-derived DCs with each of the recombinant viruses resulted in DC activation, as shown by increased surface expression of CD11c and CD86 as well as an increased level of alpha interferon (IFN-α) production compared to levels observed after infection with the parent virus. Intramuscular infection of mice with each of the viruses recruited and/or activated more DCs and B cells in the periphery than infection with the parent virus, leading to the production of higher levels of virus-neutralizing antibodies. Furthermore, a single immunization with recombinant RABV expressing GM-CSF or MDC protected significantly more mice against intracerebral challenge with virulent RABV than did immunization with the parental virus. Yet, these viruses did not show more virulence than the parent virus, since direct intracerebral inoculation with each virus at up to 1 × 10(7) fluorescent focus units each did not induce any overt clinic symptom, such as abnormal behavior, or any neurological signs. Together, these data indicate that recombinant RABVs expressing these molecules activate/recruit DCs and enhance protective immune responses.


Assuntos
Quimiocinas/imunologia , Células Dendríticas/imunologia , Vacina Antirrábica/imunologia , Vírus da Raiva/imunologia , Raiva/imunologia , Recombinação Genética , Imunidade Adaptativa , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Quimiocina CCL22/genética , Quimiocina CCL22/imunologia , Quimiocina CCL22/metabolismo , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Quimiocina CCL3/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Cricetinae , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Raiva/prevenção & controle , Raiva/virologia , Vacina Antirrábica/genética , Vírus da Raiva/genética , Vírus da Raiva/metabolismo , Vírus da Raiva/patogenicidade , Vacinação
14.
Adv Sci (Weinh) ; 9(34): e2202771, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36316224

RESUMO

Despite the success of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines, there remains a clear need for new classes of preventatives for respiratory viral infections due to vaccine hesitancy, lack of sterilizing immunity, and for at-risk patient populations, including the immunocompromised. While many neutralizing antibodies have been identified, and several approved, to treat COVID-19, systemic delivery, large doses, and high costs have the potential to limit their widespread use, especially in low- and middle-income countries. To use these antibodies more efficiently, an inhalable formulation is developed that allows for the expression of mRNA-encoded, membrane-anchored neutralizing antibodies in the lung to mitigate SARS-CoV-2 infections. First, the ability of mRNA-encoded, membrane-anchored, anti-SARS-CoV-2 antibodies to prevent infections in vitro is demonstrated. Next, it is demonstrated that nebulizer-based delivery of these mRNA-expressed neutralizing antibodies potently abrogates disease in the hamster model. Overall, these results support the use of nebulizer-based mRNA expression of neutralizing antibodies as a new paradigm for mitigating respiratory virus infections.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , RNA Mensageiro/genética , Anticorpos Neutralizantes/uso terapêutico
15.
bioRxiv ; 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34931190

RESUMO

We present a small molecule chemotype, identified by an orthogonal drug screen, exhibiting nanomolar activity against members of all the six viral families causing most human respiratory viral disease, with a demonstrated barrier to resistance development. Antiviral activity is shown in mammalian cells, including human primary bronchial epithelial cells cultured to an air-liquid interface and infected with SARS-CoV-2. In animals, efficacy of early compounds in the lead series is shown by survival (for a coronavirus) and viral load (for a paramyxovirus). The drug target is shown to include a subset of the protein 14-3-3 within a transient host multi-protein complex containing components implicated in viral lifecycles and in innate immunity. This multi-protein complex is modified upon viral infection and largely restored by drug treatment. Our findings suggest a new clinical therapeutic strategy for early treatment upon upper respiratory viral infection to prevent progression to lower respiratory tract or systemic disease. One Sentence Summary: A host-targeted drug to treat all respiratory viruses without viral resistance development.

16.
J Gen Virol ; 92(Pt 11): 2586-2589, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21752963

RESUMO

Glycoprotein J (gJ) of infectious laryngotracheitis virus (ILTV) represents a major viral antigen and is dispensable for replication in cell culture and chickens. We generated gJ deletion mutants derived from the United States Department of Agriculture standard challenge strain (USDA-ch), a GFP-expressing mutant GΔgJ, a gJ deletion mutant void of any foreign DNA insertion (BΔgJ) and a gJ rescue mutant gJR with US5 restored. GΔgJ, BΔgJ and gJR were characterized in cell culture and embryonated eggs. Entry kinetic assays showed that the gJ deletion mutants did not differ in their entry kinetics from gJR. Replication kinetics strongly indicated that gJ plays an important role during egress of the virus. Differences in the abilities of the mutants to replicate in chorioallantoic membranes of chicken embryos and to release infectious virus into the allantoic fluid supported a function of gJ during the egress of ILTV from infected cells.


Assuntos
Glicoproteínas/metabolismo , Herpesvirus Galináceo 1/fisiologia , Proteínas Virais/metabolismo , Liberação de Vírus , Animais , Linhagem Celular , Embrião de Galinha , Galinhas , Deleção de Genes , Glicoproteínas/genética , Herpesvirus Galináceo 1/genética , Proteínas Virais/genética
17.
Sci Rep ; 11(1): 18085, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508172

RESUMO

Effective vaccines are slowing the COVID-19 pandemic, but SARS-CoV-2 will likely remain an issue in the future making it important to have therapeutics to treat patients. There are few options for treating patients with COVID-19. We show probenecid potently blocks SARS-CoV-2 replication in mammalian cells and virus replication in a hamster model. Furthermore, we demonstrate that plasma concentrations up to 50-fold higher than the protein binding adjusted IC90 value are achievable for 24 h following a single oral dose. These data support the potential clinical utility of probenecid to control SARS-CoV-2 infection in humans.


Assuntos
Antivirais/farmacologia , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Probenecid/farmacologia , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos , Animais , Chlorocebus aethiops , Células Epiteliais/virologia , Humanos , Pulmão/virologia , Células Vero
18.
Nat Biotechnol ; 39(6): 717-726, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33536629

RESUMO

Cas13a has been used to target RNA viruses in cell culture, but efficacy has not been demonstrated in animal models. In this study, we used messenger RNA (mRNA)-encoded Cas13a for mitigating influenza virus A and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in mice and hamsters, respectively. We designed CRISPR RNAs (crRNAs) specific for PB1 and highly conserved regions of PB2 of influenza virus, and against the replicase and nucleocapsid genes of SARS-CoV-2, and selected the crRNAs that reduced viral RNA levels most efficiently in cell culture. We delivered polymer-formulated Cas13a mRNA and the validated guides to the respiratory tract using a nebulizer. In mice, Cas13a degraded influenza RNA in lung tissue efficiently when delivered after infection, whereas in hamsters, Cas13a delivery reduced SARS-CoV-2 replication and reduced symptoms. Our findings suggest that Cas13a-mediated targeting of pathogenic viruses can mitigate respiratory infections.


Assuntos
COVID-19/terapia , Influenza Humana/terapia , RNA Mensageiro/farmacologia , SARS-CoV-2/genética , Animais , COVID-19/genética , COVID-19/virologia , Sistemas CRISPR-Cas/genética , Cricetinae , Modelos Animais de Doenças , Humanos , Influenza Humana/genética , Influenza Humana/virologia , Camundongos , Orthomyxoviridae/efeitos dos fármacos , Orthomyxoviridae/genética , Orthomyxoviridae/patogenicidade , RNA Mensageiro/genética , RNA Viral/genética , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/metabolismo , SARS-CoV-2/patogenicidade
19.
BMC Microbiol ; 10: 250, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20920184

RESUMO

BACKGROUND: Burkholderia pseudomallei and Burkholderia mallei cause the diseases melioidosis and glanders, respectively. A well-studied aspect of pathogenesis by these closely-related bacteria is their ability to invade and multiply within eukaryotic cells. In contrast, the means by which B. pseudomallei and B. mallei adhere to cells are poorly defined. The purpose of this study was to identify adherence factors expressed by these organisms. RESULTS: Comparative sequence analyses identified a gene product in the published genome of B. mallei strain ATCC23344 (locus # BMAA0649) that resembles the well-characterized Yersinia enterocolitica autotransporter adhesin YadA. The gene encoding this B. mallei protein, designated boaA, was expressed in Escherichia coli and shown to significantly increase adherence to human epithelial cell lines, specifically HEp2 (laryngeal cells) and A549 (type II pneumocytes), as well as to cultures of normal human bronchial epithelium (NHBE). Consistent with these findings, disruption of the boaA gene in B. mallei ATCC23344 reduced adherence to all three cell types by ~50%. The genomes of the B. pseudomallei strains K96243 and DD503 were also found to contain boaA and inactivation of the gene in DD503 considerably decreased binding to monolayers of HEp2 and A549 cells and to NHBE cultures.A second YadA-like gene product highly similar to BoaA (65% identity) was identified in the published genomic sequence of B. pseudomallei strain K96243 (locus # BPSL1705). The gene specifying this protein, termed boaB, appears to be B. pseudomallei-specific. Quantitative attachment assays demonstrated that recombinant E. coli expressing BoaB displayed greater binding to A549 pneumocytes, HEp2 cells and NHBE cultures. Moreover, a boaB mutant of B. pseudomallei DD503 showed decreased adherence to these respiratory cells. Additionally, a B. pseudomallei strain lacking expression of both boaA and boaB was impaired in its ability to thrive inside J774A.1 murine macrophages, suggesting a possible role for these proteins in survival within professional phagocytic cells. CONCLUSIONS: The boaA and boaB genes specify adhesins that mediate adherence to epithelial cells of the human respiratory tract. The boaA gene product is shared by B. pseudomallei and B. mallei whereas BoaB appears to be a B. pseudomallei-specific adherence factor.


Assuntos
Adesinas Bacterianas/genética , Burkholderia mallei/genética , Burkholderia pseudomallei/genética , Células Epiteliais/microbiologia , Sequência de Aminoácidos , Animais , Burkholderia mallei/classificação , Burkholderia mallei/patogenicidade , Burkholderia pseudomallei/classificação , Burkholderia pseudomallei/patogenicidade , Linhagem Celular , Feminino , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Análise de Sequência de DNA , Especificidade da Espécie
20.
Arch Virol ; 155(8): 1187-92, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20521069

RESUMO

Three anti-rabies virus (RABV) nucleoprotein (N) monoclonal antibodies (Mab) were characterized by immunofluorescence assays, western blotting, and immunohistochemistry. One of these Mabs recognized the antigen by all of the assays, while the other two recognized N only in the native form in the immunofluorescence assay. These data, together with epitope mapping studies, suggest that two anti-N Mabs recognize conformational epitopes located within the N-terminal region of the RABV N protein. The availability of Mabs specific for both linear and epitope-specific antibodies should prove valuable for rabies diagnosis as well as for RABV N protein structure-function studies.


Assuntos
Anticorpos Monoclonais , Especificidade de Anticorpos , Proteínas do Nucleocapsídeo/imunologia , Vírus da Raiva/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Western Blotting , Mapeamento de Epitopos , Imunofluorescência , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Nucleocapsídeo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA