Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 126(29): 4862-4872, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35839329

RESUMO

We analyze an ensemble of organophosphorus compounds to form an unbiased characterization of the information encoded in their X-ray absorption near-edge structure (XANES) and valence-to-core X-ray emission spectra (VtC-XES). Data-driven emergence of chemical classes via unsupervised machine learning, specifically cluster analysis in the Uniform Manifold Approximation and Projection (UMAP) embedding, finds spectral sensitivity to coordination, oxidation, aromaticity, intramolecular hydrogen bonding, and ligand identity. Subsequently, we implement supervised machine learning via Gaussian process classifiers to identify confidence in predictions that match our initial qualitative assessments of clustering. The results further support the benefit of utilizing unsupervised machine learning as a precursor to supervised machine learning, which we term Unsupervised Validation of Classes (UVC), a result that goes beyond the present case of X-ray spectroscopies.


Assuntos
Compostos Organofosforados , Aprendizado de Máquina não Supervisionado , Humanos , Ligantes , Espectrometria por Raios X , Espectroscopia por Absorção de Raios X
2.
Angew Chem Int Ed Engl ; 60(16): 9127-9134, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33338295

RESUMO

Surface functionalization of two-dimensional crystals is a key path to tuning their intrinsic physical and chemical properties. However, synthetic protocols and experimental strategies to directly probe chemical bonding in modified surfaces are scarce. Introduced herein is a mild, surface-specific protocol for the surface functionalization of few-layer black phosphorus nanosheets using a family of photolytically generated nitrenes (RN) from the corresponding azides. By embedding spectroscopic tags in the organic backbone, a multitude of characterization techniques are employed to investigate in detail the chemical structure of the modified nanosheets, including vibrational, X-ray photoelectron, solid state 31 P NMR, and UV-vis spectroscopy. To directly probe the functional groups introduced on the surface, R fragments were selected such that in conjunction with vibrational spectroscopy, 15 N-labeling experiments, and DFT methods, diagnostic P=N vibrational modes indicative of iminophosphorane units on the nanosheet surface could be conclusively identified.

3.
J Synchrotron Radiat ; 27(Pt 2): 446-454, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153283

RESUMO

X-ray absorption spectroscopy (XAS) beamlines worldwide are steadily increasing their emphasis on full photon-in/photon-out spectroscopies, such as resonant inelastic X-ray scattering (RIXS), resonant X-ray emission spectroscopy (RXES) and high energy resolution fluorescence detection XAS (HERFD-XAS). In such cases, each beamline must match the choice of emission spectrometer to the scientific mission of its users. Previous work has recently reported a miniature tender X-ray spectrometer using a dispersive Rowland refocusing (DRR) geometry that functions with high energy resolution even with a large X-ray spot size on the sample [Holden et al. (2017). Rev. Sci. Instrum. 88, 073904]. This instrument has been used in the laboratory in multiple studies of non-resonant X-ray emission spectroscopy using a conventional X-ray tube, though only for preliminary measurements at a low-intensity microfocus synchrotron beamline. This paper reports an extensive study of the performance of a miniature DRR spectrometer at an unfocused wiggler beamline, where the incident monochromatic flux allows for resonant studies which are impossible in the laboratory. The results support the broader use of the present design and also suggest that the DRR method with an unfocused beam could have important applications for materials with low radiation damage thresholds and that would not survive analysis on focused beamlines.

4.
J Phys Chem A ; 124(26): 5415-5434, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32486638

RESUMO

An extensive experimental and theoretical study of the Kα and Kß high-resolution X-ray emission spectroscopy (XES) of sulfur-bearing systems is presented. This study encompasses a wide range of organic and inorganic compounds, including numerous experimental spectra from both prior published work and new measurements. Employing a linear-response time-dependent density functional theory (LR-TDDFT) approach, strong quantitative agreement is found in the calculation of energy shifts of the core-to-core Kα as well as the full range of spectral features in the valence-to-core Kß spectrum. The ability to accurately calculate the sulfur Kα energy shift supports the use of sulfur Kα XES as a bulk-sensitive tool for assessing sulfur speciation. The fine structure of the sulfur Kß spectrum, in conjunction with the theoretical results, is shown to be sensitive to the local electronic structure including effects of symmetry, ligand type and number, and, in the case of organosulfur compounds, to the nature of the bonded organic moiety. This agreement between theory and experiment, augmented by the potential for high-access XES measurements with the latest generation of laboratory-based spectrometers, demonstrates the possibility of broad analytical use of XES for sulfur and nearby third-row elements. The effective solution of the forward problem, i.e., successful prediction of detailed spectra from known molecular structure, also suggests future use of supervised machine learning approaches to experimental inference, as has seen recent interest for interpretation of X-ray absorption near-edge structure (XANES).

5.
J Phys Chem A ; 122(23): 5153-5161, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29781610

RESUMO

The analytical chemistry of sulfur-containing materials poses substantial technical challenges, especially due to the limitations of 33S NMR and the time-intensive preparations required for wet-chemistry analyses. A number of prior studies have found that synchrotron-based X-ray absorption near edge structure (XANES) measurements can give detailed speciation of sulfur chemistry in such cases. However, due to the obvious access limitations, synchrotron XANES of sulfur cannot be part of routine analytical practice across the chemical sciences community. Here, in a study of the sulfur chemistry in biochars, we compare and contrast the chemical inferences available from synchrotron XANES with that given by benchtop, extremely high resolution wavelength-dispersive X-ray fluorescence (WD-XRF) spectroscopy, also often called X-ray emission spectroscopy (XES). While the XANES spectra have higher total information content, often giving differentiation between different moieties having the same oxidation state, the lower sensitivity of the S Kα XES to coordination and local structure provides pragmatic benefit for the more limited goal of quantifying the S oxidation state distribution. Within that constrained metric, we find good agreement between the two methods. As the sulfur concentrations were as low as 150 ppm, these measurements provide proof-of-principle for characterization of the sulfur chemistry of biochars and potential applications to other areas such as soils, batteries, catalysts, and fossil fuels and their combustion products.

6.
Sports Health ; 15(1): 142-147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35354392

RESUMO

STUDY DESIGN: Case series. LEVEL OF EVIDENCE: Level 4C.


Assuntos
Lacerações , Esqui , Humanos , Pesquisa
7.
Adv Mater ; 33(35): e2101259, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34292627

RESUMO

Black phosphorus (BP) is a promising anode material in lithium-ion batteries (LIBs) owing to its high electrical conductivity and capacity. However, the huge volume change of BP during cycling induces rapid capacity fading. In addition, the unclear electrochemical mechanism of BP hinders the development of rational designs and preparation of high-performance BP-based anodes. Here, a high-performance nanostructured BP-graphite-carbon nanotubes composite (BP/G/CNTs) synthesized using ball-milling method is reported. The BP/G/CNTs anode delivers a high initial capacity of 1375 mA h g-1 at 0.15 A g-1 and maintains 1031.7 mA h g-1 after 450 cycles. Excellent high-rate performance is demonstrated with a capacity of 508.1 mA h g-1 after 3000 cycles at 2 A g-1 . Moreover, for the first time, direct evidence is provided experimentally to present the electrochemical mechanism of BP anodes with three-step lithiation and delithiation using ex situ X-ray diffraction (XRD), ex situ X-ray absorption spectroscopy (XAS), ex situ X-ray emission spectroscopy, operando XRD, and operando XAS, which reveal the formation of Li3 P7 , LiP, and Li3 P. Furthermore, the study indicates an open-circuit relaxation effect of the electrode with ex situ and operando XAS analyses.

8.
eNeuro ; 7(2)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32102779

RESUMO

Nicotine use increases the risk for subsequent abuse of other addictive drugs, but the biological basis underlying this risk remains largely unknown. Interactions between nicotine and other drugs of abuse may arise from nicotine-induced neural adaptations in the mesolimbic dopamine (DA) system, a common pathway for the reinforcing effects of many addictive substances. Previous work identified nicotine-induced neuroadaptations that alter inhibitory transmission in the ventral tegmental area (VTA). Here, we test whether nicotine-induced dysregulation of GABAergic signaling within the VTA increases the vulnerability for benzodiazepine abuse that has been reported in smokers. We demonstrate in rats that nicotine exposure dysregulates diazepam-induced inhibition of VTA GABA neurons and increases diazepam consumption. In VTA GABA neurons, nicotine impaired KCC2-mediated chloride extrusion, depolarized the GABAA reversal potential, and shifted the pharmacological effect of diazepam on GABA neurons from inhibition toward excitation. In parallel, nicotine-related alterations in GABA signaling observed ex vivo were associated with enhanced diazepam-induced inhibition of lateral VTA DA neurons in vivo Targeting KCC2 with the agonist CLP290 normalized diazepam-induced effects on VTA GABA transmission and reduced diazepam consumption following nicotine administration to the control level. Together, our results provide insights into midbrain circuit alterations resulting from nicotine exposure that contribute to the abuse of other drugs, such as benzodiazepines.


Assuntos
Nicotina , Área Tegmentar Ventral , Animais , Diazepam/farmacologia , Neurônios Dopaminérgicos , Neurônios GABAérgicos , Nicotina/farmacologia , Ratos
9.
Rev Sci Instrum ; 90(1): 013106, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30709184

RESUMO

We demonstrate that vacuum forming of 10-cm diameter silicon wafers of various crystallographic orientations under an x-ray permeable, flexible window can easily generate spherically bent crystal analyzers and toroidally bent crystal analyzers with ∼1-eV energy resolution and a 1-m major radius of curvature. In applications at synchrotron light sources, x-ray free electron lasers, and laboratory spectrometers, these characteristics are generally sufficient for many x-ray absorption fine structure (XAFS), x-ray emission spectroscopy (XES), and resonant inelastic x-ray scattering applications in the chemical sciences. Unlike existing optics manufacturing methods using epoxy or anodic bonding, vacuum forming without adhesive is temporary in the sense that the bent wafer can be removed when vacuum is released and exchanged for a different orientation wafer. Therefore, the combination of an x-ray compatible vacuum-forming chamber, a library of thin wafers, and a small number of forms having different secondary curvatures can give extreme flexibility in spectrometer energy range. As proof of this method, we determine the energy resolution and reflectivity for several such vacuum-formed bent crystal analyzers in laboratory-based XAFS and XES studies using a conventional x-ray tube. For completeness, we also show x-ray images collected on the detector plane to characterize the resulting focal spots and optical aberrations.

10.
Rev Sci Instrum ; 90(2): 024106, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30831699

RESUMO

X-ray absorption fine structure (XAFS) and x-ray emission spectroscopy (XES) are advanced x-ray spectroscopies that impact a wide range of disciplines. However, unlike the majority of other spectroscopic methods, XAFS and XES are accompanied by an unusual access model, wherein the dominant use of the technique is for premier research studies at world-class facilities, i.e., synchrotron x-ray light sources. In this paper, we report the design and performance of an improved XAFS and XES spectrometer based on the general conceptual design of Seidler et al. [Rev. Sci. Instrum. 85, 113906 (2014)]. New developments include reduced mechanical degrees of freedom, much-increased flux, and a wider Bragg angle range to enable extended x-ray absorption fine structure (EXAFS) measurement and analysis for the first time with this type of modern laboratory XAFS configuration. This instrument enables a new class of routine applications that are incompatible with the mission and access model of the synchrotron light sources. To illustrate this, we provide numerous examples of x-ray absorption near edge structure (XANES), EXAFS, and XES results for a variety of problems and energy ranges. Highlights include XAFS and XES measurements of battery electrode materials, EXAFS of Ni with full modeling of results to validate monochromator performance, valence-to-core XES for 3d transition metal compounds, and uranium XANES and XES for different oxidation states. Taken en masse, these results further support the growing perspective that modern laboratory-based XAFS and XES have the potential to develop a new branch of analytical chemistry.

11.
Rev Sci Instrum ; 89(9): 093111, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278704

RESUMO

There are several reports in the scientific literature of the use of mass-produced charge coupled device or complementary metal oxide semiconductor (CMOS) sensors as x-ray detectors that combine high spatial resolution with significant energy resolution. Exploiting a relatively new especially favorable ambient-temperature back-illuminated CMOS sensor, we report the development of a spectroscopic x-ray camera having particularly impressive performance for 2-6 keV photons. This instrument has several beneficial characteristics for advanced x-ray spectroscopy studies in the laboratory, at synchrotron light sources, at x-ray free electron lasers, or when using pulsed x-ray sources such as for laser plasma physics research. These characteristics include fine position and energy resolution for individual photon events, high saturation rates, frame rates above 100 Hz, easy user maintenance for damaged sensors, and software for real-time processing. We evaluate this camera as an alternative to traditional energy-dispersive solid-state detectors, such as silicon drift detectors, and also illustrate its use in a very high resolution wavelength-dispersive x-ray fluorescence spectrometer (i.e., x-ray emission spectrometer) that has recently been reported elsewhere [W. M. Holden et al., Rev. Sci. Instrum. 88(7), 073904 (2017)].

12.
Cell Rep ; 23(1): 68-77, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29617674

RESUMO

Adolescent smoking is associated with pathological drinking later in life, but the biological basis for this vulnerability is unknown. To examine how adolescent nicotine exposure influences subsequent ethanol intake, nicotine was administered during adolescence or adulthood, and responses to alcohol were measured 1 month later. We found that adolescent, but not adult, nicotine exposure altered GABA signaling within the ventral tegmental area (VTA) and led to a long-lasting enhancement of alcohol self-administration. We detected depolarizing shifts in GABAA reversal potentials arising from impaired chloride extrusion in VTA GABA neurons. Alterations in GABA signaling were dependent on glucocorticoid receptor activation and were associated with attenuated dopaminergic neuron responses to alcohol in the lateral VTA. Importantly, enhancing chloride extrusion in adolescent nicotine-treated animals restored VTA GABA signaling and alcohol self-administration to control levels. Taken together, this work suggests that adolescent nicotine exposure increases the risk profile for increased alcohol drinking in adulthood.


Assuntos
Etanol/farmacologia , Nicotina/farmacologia , Receptores de GABA-A/metabolismo , Potenciais Sinápticos , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Etanol/administração & dosagem , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Masculino , Ratos , Ratos Long-Evans , Receptores de Glucocorticoides/metabolismo , Autoadministração , Área Tegmentar Ventral/crescimento & desenvolvimento
13.
Rev Sci Instrum ; 88(7): 073904, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28764488

RESUMO

X-ray emission spectroscopy is emerging as an important complement to x-ray absorption fine structure spectroscopy, providing a characterization of the occupied electronic density of states local to the species of interest. Here, we present details of the design and performance of a compact x-ray emission spectrometer that uses a dispersive refocusing Rowland (DRR) circle geometry to achieve excellent performance for the 2-2.5 keV range, i.e., especially for the K-edge emission from sulfur and phosphorous. The DRR approach allows high energy resolution even for unfocused x-ray sources. This property enables high count rates in laboratory studies, approaching those of insertion-device beamlines at third-generation synchrotrons, despite use of only a low-powered, conventional x-ray tube. The spectrometer, whose overall scale is set by use of a 10-cm diameter Rowland circle and a new small-pixel complementary metal-oxide-semiconductor x-ray camera, is easily portable to synchrotron or x-ray free electron laser beamlines. Photometrics from measurements at the Advanced Light Source show excellent overall instrumental efficiency. In addition, the compact size of this instrument lends itself to future multiplexing to gain large factors in net collection efficiency or its implementation in controlled gas gloveboxes either in the lab or in an endstation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA