Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Biol Chem ; 295(10): 2974-2983, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31974166

RESUMO

Tau aggregation underlies neurodegeneration in Alzheimer's disease and related tauopathies. We and others have proposed that transcellular propagation of pathology is mediated by Tau prions, which are ordered protein assemblies that faithfully replicate in vivo and cause specific biological effects. The prion model predicts the release of aggregates from a first-order cell and subsequent uptake into a second-order cell. The assemblies then serve as templates for their own replication, a process termed "seeding." We have previously observed that heparan sulfate proteoglycans on the cell surface mediate the cellular uptake of Tau aggregates. This interaction is blocked by heparin, a sulfated glycosaminoglycan. Indeed, heparin-like molecules, or heparinoids, have previously been proposed as a treatment for PrP prion disorders. However, heparin is not ideal for managing chronic neurodegeneration, because it is difficult to synthesize in defined sizes, may have poor brain penetration because of its negative charge, and is a powerful anticoagulant. Therefore, we sought to generate an oligosaccharide that would bind Tau and block its cellular uptake and seeding, without exhibiting anticoagulation activity. We created a compound, SN7-13, from pentasaccharide units and tested it in a range of assays that measured direct binding of Tau to glycosaminoglycans and inhibition of Tau uptake and seeding in cells. SN7-13 does not inhibit coagulation, binds Tau with low nanomolar affinity, and inhibits cellular Tau aggregate propagation similarly to standard porcine heparin. This synthetic heparinoid could facilitate the development of agents to treat tauopathy.


Assuntos
Heparina de Baixo Peso Molecular/metabolismo , Proteínas tau/metabolismo , Animais , Células HEK293 , Heparina de Baixo Peso Molecular/química , Heparina de Baixo Peso Molecular/farmacologia , Hipocampo/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Tempo de Tromboplastina Parcial , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Agregados Proteicos/efeitos dos fármacos , Ligação Proteica , Tempo de Protrombina , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas tau/química , Proteínas tau/genética
2.
BMC Neurol ; 21(1): 52, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33535981

RESUMO

BACKGROUND: Isolated spinal artery aneurysms are extremely rare, and their pathogenesis, clinical presentation, and treatment strategies are poorly established. We report only the second case of a patient with an isolated posterior spinal aneurysm and concurrent left thalamic infarct and review the literature to help clarify treatment strategies of isolated spinal aneurysms. CASE PRESENTATION: A 49-year-old patient presented with acute onset walking difficulty followed by diaphoresis, back and abdominal pain, and paraplegia. Imaging was notable for a hemorrhagic spinal lesion with compression at T12 through L4 and an acute left thalamic infarct. Surgical exploration revealed an isolated posterior spinal artery aneurysm. The aneurysm was surgically resected and the patient had partial recovery six months post-operatively. CONCLUSIONS: Isolated posterior spinal artery aneurysms of the thoracolumbar region are rare lesions that commonly present with abdominal pain, radiating back pain, and lower extremity weakness. Imaging may not provide a definitive diagnosis. The three primary treatment strategies are conservative management, endovascular treatment, or surgical resection. In patients with symptomatic cord compression, immediate surgical intervention is indicated to preserve neurologic function. In all other cases, the artery size, distal flow, morphology, and location may guide management.


Assuntos
Aneurisma Roto/complicações , Infarto Cerebral/etiologia , Medula Espinal/irrigação sanguínea , Medula Espinal/patologia , Artéria Vertebral/patologia , Aneurisma Roto/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Medula Espinal/cirurgia , Hemorragia Subaracnóidea/etiologia , Hemorragia Subaracnóidea/cirurgia
3.
J Biol Chem ; 294(3): 1045-1058, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30478174

RESUMO

Parkinson's disease (PD) and multiple system atrophy (MSA) are distinct clinical syndromes characterized by the pathological accumulation of α-synuclein (α-syn) protein fibrils in neurons and glial cells. These disorders and other neurodegenerative diseases may progress via prion-like mechanisms. The prion model of propagation predicts the existence of "strains" that link pathological aggregate structure and neuropathology. Prion strains are aggregated conformers that stably propagate in vivo and cause disease with defined incubation times and patterns of neuropathology. Indeed, tau prions have been well defined, and research suggests that both α-syn and ß-amyloid may also form strains. However, there is a lack of studies characterizing PD- versus MSA-derived α-syn strains or demonstrating stable propagation of these unique conformers between cells or animals. To fill this gap, we used an assay based on FRET that exploits a HEK293T "biosensor" cell line stably expressing α-syn (A53T)-CFP/YFP fusion proteins to detect α-syn seeds in brain extracts from PD and MSA patients. Both soluble and insoluble fractions of MSA extracts had robust seeding activity, whereas only the insoluble fractions of PD extracts displayed seeding activity. The morphology of MSA-seeded inclusions differed from PD-seeded inclusions. These differences persisted upon propagation of aggregation to second-generation biosensor cells. We conclude that PD and MSA feature α-syn conformers with very distinct biochemical properties that can be transmitted to α-syn monomers in a cell system. These findings are consistent with the idea that distinct α-syn strains underlie PD and MSA and offer possible directions for synucleinopathy diagnosis.


Assuntos
Técnicas Biossensoriais/métodos , Encéfalo/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/análise , Encéfalo/patologia , Células HEK293 , Humanos , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/patologia
4.
J Biol Chem ; 293(27): 10826-10840, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29752409

RESUMO

Transcellular propagation of protein aggregate "seeds" has been proposed to mediate the progression of neurodegenerative diseases in tauopathies and α-synucleinopathies. We previously reported that tau and α-synuclein aggregates bind heparan sulfate proteoglycans (HSPGs) on the cell surface, promoting cellular uptake and intracellular seeding. However, the specificity and binding mode of these protein aggregates to HSPGs remain unknown. Here, we measured direct interaction with modified heparins to determine the size and sulfation requirements for tau, α-synuclein, and ß-amyloid (Aß) aggregate binding to glycosaminoglycans (GAGs). Varying the GAG length and sulfation patterns, we next conducted competition studies with heparin derivatives in cell-based assays. Tau aggregates required a precise GAG architecture with defined sulfate moieties in the N- and 6-O-positions, whereas the binding of α-synuclein and Aß aggregates was less stringent. To determine the genes required for aggregate uptake, we used CRISPR/Cas9 to individually knock out the major genes of the HSPG synthesis pathway in HEK293T cells. Knockouts of the extension enzymes exostosin 1 (EXT1), exostosin 2 (EXT2), and exostosin-like 3 (EXTL3), as well as N-sulfotransferase (NDST1) or 6-O-sulfotransferase (HS6ST2) significantly reduced tau uptake, consistent with our biochemical findings, and knockouts of EXT1, EXT2, EXTL3, or NDST1, but not HS6ST2 reduced α-synuclein uptake. In summary, tau aggregates display specific interactions with HSPGs that depend on GAG length and sulfate moiety position, whereas α-synuclein and Aß aggregates exhibit more flexible interactions with HSPGs. These principles may inform the development of mechanism-based therapies to block transcellular propagation of amyloid protein-based pathologies.


Assuntos
Peptídeos beta-Amiloides/química , Glicosaminoglicanos/química , Proteoglicanas de Heparan Sulfato/metabolismo , Enxofre/metabolismo , Tauopatias/patologia , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Sistemas CRISPR-Cas , Glicosaminoglicanos/metabolismo , Humanos , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Sulfotransferases/antagonistas & inibidores , Sulfotransferases/genética , Sulfotransferases/metabolismo , Tauopatias/metabolismo
5.
J Neuroophthalmol ; 37(2): 179-181, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28350571

RESUMO

Vertebrobasilar dolichoectasia (VBD) is characterized by significant dilation, elongation, and tortuosity of the vertebrobasilar system. We present a unique case of VBD, confirmed by neuroimaging studies, showing vascular compression of the right optic tract and lower cranial nerves leading to an incongruous left homonymous inferior quadrantanopia and glossopharyngeal neuralgia.


Assuntos
Doenças do Nervo Glossofaríngeo/etiologia , Hemianopsia/etiologia , Trato Óptico/diagnóstico por imagem , Insuficiência Vertebrobasilar/complicações , Idoso de 80 Anos ou mais , Diagnóstico Diferencial , Doenças do Nervo Glossofaríngeo/diagnóstico , Hemianopsia/diagnóstico , Humanos , Angiografia por Ressonância Magnética , Masculino , Oftalmoscopia , Síndrome , Insuficiência Vertebrobasilar/diagnóstico
6.
Proc Natl Acad Sci U S A ; 111(41): E4376-85, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25261551

RESUMO

Transcellular propagation of protein aggregates, or proteopathic seeds, may drive the progression of neurodegenerative diseases in a prion-like manner. In tauopathies such as Alzheimer's disease, this model predicts that tau seeds propagate pathology through the brain via cell-cell transfer in neural networks. The critical role of tau seeding activity is untested, however. It is unknown whether seeding anticipates and correlates with subsequent development of pathology as predicted for a causal agent. One major limitation has been the lack of a robust assay to measure proteopathic seeding activity in biological specimens. We engineered an ultrasensitive, specific, and facile FRET-based flow cytometry biosensor assay based on expression of tau or synuclein fusions to CFP and YFP, and confirmed its sensitivity and specificity to tau (∼ 300 fM) and synuclein (∼ 300 pM) fibrils. This assay readily discriminates Alzheimer's disease vs. Huntington's disease and aged control brains. We then carried out a detailed time-course study in P301S tauopathy mice, comparing seeding activity versus histological markers of tau pathology, including MC1, AT8, PG5, and Thioflavin S. We detected robust seeding activity at 1.5 mo, >1 mo before the earliest histopathological stain. Proteopathic tau seeding is thus an early and robust marker of tauopathy, suggesting a proximal role for tau seeds in neurodegeneration.


Assuntos
Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Biomarcadores/metabolismo , Técnicas Biossensoriais , Células Cultivadas , Modelos Animais de Doenças , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Camundongos Transgênicos , Proteínas Mutantes/metabolismo , Ligação Proteica
7.
J Biol Chem ; 290(24): 14893-903, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25887395

RESUMO

Tau amyloid assemblies propagate aggregation from the outside to the inside of a cell, which may mediate progression of the tauopathies. The critical size of Tau assemblies, or "seeds," responsible for this activity is currently unknown, but this could be important for the design of effective therapies. We studied recombinant Tau repeat domain (RD) and Tau assemblies purified from Alzheimer disease (AD) brain composed largely of full-length Tau. Large RD fibrils were first sonicated to create a range of assembly sizes. We confirmed our ability to resolve stable assemblies ranging from n = 1 to >100 units of Tau using size exclusion chromatography, fluorescence correlation spectroscopy, cross-linking followed by Western blot, and mass spectrometry. All recombinant Tau assemblies bound heparan sulfate proteoglycans on the cell surface, which are required for Tau uptake and seeding, because they were equivalently sensitive to inhibition by heparin and chlorate. However, cells only internalized RD assemblies of n ≥ 3 units. We next analyzed Tau assemblies from AD or control brains. AD brains contained aggregated species, whereas normal brains had predominantly monomer, and no evidence of large assemblies. HEK293 cells and primary neurons spontaneously internalized Tau of n ≥ 3 units from AD brain in a heparin- and chlorate-sensitive manner. Only n ≥ 3-unit assemblies from AD brain spontaneously seeded intracellular Tau aggregation in HEK293 cells. These results indicate that a clear minimum size (n = 3) of Tau seed exists for spontaneous propagation of Tau aggregation from the outside to the inside of a cell, whereas many larger sizes of soluble aggregates trigger uptake and seeding.


Assuntos
Biopolímeros/metabolismo , Proteínas tau/metabolismo , Cromatografia em Gel , Células HEK293 , Humanos , Espectrometria de Fluorescência
8.
Proc Natl Acad Sci U S A ; 110(33): E3138-47, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23898162

RESUMO

Recent experimental evidence suggests that transcellular propagation of fibrillar protein aggregates drives the progression of neurodegenerative diseases in a prion-like manner. This phenomenon is now well described in cell and animal models and involves the release of protein aggregates into the extracellular space. Free aggregates then enter neighboring cells to seed further fibrillization. The mechanism by which aggregated extracellular proteins such as tau and α-synuclein bind and enter cells to trigger intracellular fibril formation is unknown. Prior work indicates that prion protein aggregates bind heparan sulfate proteoglycans (HSPGs) on the cell surface to transmit pathologic processes. Here, we find that tau fibril uptake also occurs via HSPG binding. This is blocked in cultured cells and primary neurons by heparin, chlorate, heparinase, and genetic knockdown of a key HSPG synthetic enzyme, Ext1. Interference with tau binding to HSPGs prevents recombinant tau fibrils from inducing intracellular aggregation and blocks transcellular aggregate propagation. In vivo, a heparin mimetic, F6, blocks neuronal uptake of stereotactically injected tau fibrils. Finally, uptake and seeding by α-synuclein fibrils, but not huntingtin fibrils, occurs by the same mechanism as tau. This work suggests a unifying mechanism of cell uptake and propagation for tauopathy and synucleinopathy.


Assuntos
Amiloide/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Células-Tronco Neurais/metabolismo , Pinocitose/fisiologia , Proteínas tau/metabolismo , Actinas/metabolismo , Animais , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Imuno-Histoquímica , Indóis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Células-Tronco Neurais/fisiologia
9.
J Biol Chem ; 289(29): 19855-61, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24860099

RESUMO

Work over the past 4 years indicates that multiple proteins associated with neurodegenerative diseases, especially Tau and α-synuclein, can propagate aggregates between cells in a prion-like manner. This means that once an aggregate is formed it can escape the cell of origin, contact a connected cell, enter the cell, and induce further aggregation via templated conformational change. The prion model predicts a key role for extracellular protein aggregates in mediating progression of disease. This suggests new therapeutic approaches based on blocking neuronal uptake of protein aggregates and promoting their clearance. This will likely include therapeutic antibodies or small molecules, both of which can be developed and optimized in vitro prior to preclinical studies.


Assuntos
Príons/metabolismo , Tauopatias/metabolismo , Tauopatias/terapia , Proteínas tau/metabolismo , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Animais , Membrana Celular/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Príons/química , Conformação Proteica , Multimerização Proteica , Transporte Proteico , Tauopatias/imunologia , Vacinas/imunologia , Vacinas/uso terapêutico , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Proteínas tau/química , Proteínas tau/imunologia
10.
J Biol Chem ; 288(9): 6063-71, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23319588

RESUMO

Huntington disease is a dominantly inherited neurodegenerative condition caused by polyglutamine expansion in the N terminus of the huntingtin protein (Htt). The first 17 amino acids (N17) of Htt play a key role in regulating its toxicity and aggregation. Both nuclear export and cytoplasm retention functions have been ascribed to N17. We have determined that N17 acts as a nuclear export sequence (NES) within Htt exon and when fused to yellow fluorescent protein. We have defined amino acids within N17 that constitute the nuclear export sequence (NES). Mutation of any of the conserved residues increases nuclear accumulation of Htt exon 1. Nuclear export of Htt is sensitive to leptomycin B and is reduced by knockdown of exportin 1. In HEK293 cells, NES mutations decrease overall Htt aggregation but increase the fraction of cells with nuclear inclusions. In primary cultured neurons, NES mutations increase nuclear accumulation and increase overall aggregation. This work defines a bona fide nuclear export sequence within N17 and links it to effects on protein aggregation. This may help explain the important role of N17 in controlling Htt toxicity.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Éxons , Proteínas do Tecido Nervoso/metabolismo , Sinais de Exportação Nuclear , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Antibióticos Antineoplásicos/farmacologia , Núcleo Celular/genética , Citoplasma/genética , Ácidos Graxos Insaturados/farmacologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Proteína Huntingtina , Carioferinas/genética , Carioferinas/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Exportina 1
11.
Sci Transl Med ; 16(753): eadl3758, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924428

RESUMO

Vitamin B12 is critical for hematopoiesis and myelination. Deficiency can cause neurologic deficits including loss of coordination and cognitive decline. However, diagnosis relies on measurement of vitamin B12 in the blood, which may not accurately reflect the concentration in the brain. Using programmable phage display, we identified an autoantibody targeting the transcobalamin receptor (CD320) in a patient with progressive tremor, ataxia, and scanning speech. Anti-CD320 impaired cellular uptake of cobalamin (B12) in vitro by depleting its target from the cell surface. Despite a normal serum concentration, B12 was nearly undetectable in her cerebrospinal fluid (CSF). Immunosuppressive treatment and high-dose systemic B12 supplementation were associated with increased B12 in the CSF and clinical improvement. Optofluidic screening enabled isolation of a patient-derived monoclonal antibody that impaired B12 transport across an in vitro model of the blood-brain barrier (BBB). Autoantibodies targeting the same epitope of CD320 were identified in seven other patients with neurologic deficits of unknown etiology, 6% of healthy controls, and 21.4% of a cohort of patients with neuropsychiatric lupus. In 132 paired serum and CSF samples, detection of anti-CD320 in the blood predicted B12 deficiency in the brain. However, these individuals did not display any hematologic signs of B12 deficiency despite systemic CD320 impairment. Using a genome-wide CRISPR screen, we found that the low-density lipoprotein receptor serves as an alternative B12 uptake pathway in hematopoietic cells. These findings dissect the tissue specificity of B12 transport and elucidate an autoimmune neurologic condition that may be amenable to immunomodulatory treatment and nutritional supplementation.


Assuntos
Autoanticorpos , Deficiência de Vitamina B 12 , Vitamina B 12 , Humanos , Deficiência de Vitamina B 12/imunologia , Vitamina B 12/sangue , Autoanticorpos/sangue , Autoanticorpos/imunologia , Feminino , Receptores de Superfície Celular/metabolismo , Antígenos CD/metabolismo , Pessoa de Meia-Idade , Doenças Autoimunes/imunologia , Doenças Autoimunes/sangue , Barreira Hematoencefálica/metabolismo , Masculino
12.
J Biol Chem ; 287(23): 19440-51, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22461630

RESUMO

Aggregation of the microtubule associated protein Tau is associated with several neurodegenerative disorders, including Alzheimer disease and frontotemporal dementia. In Alzheimer disease, Tau pathology spreads progressively throughout the brain, possibly along existing neural networks. However, it is still unclear how the propagation of Tau misfolding occurs. Intriguingly, in animal models, vaccine-based therapies have reduced Tau and synuclein pathology by uncertain mechanisms, given that these proteins are intracellular. We have previously speculated that trans-cellular propagation of misfolding could be mediated by a process similar to prion pathogenesis, in which fibrillar Tau aggregates spread pathology from cell to cell. However, there has been little evidence to demonstrate true trans-cellular propagation of Tau misfolding, in which Tau aggregates from one cell directly contact Tau protein in the recipient cell to trigger further aggregation. Here we have observed that intracellular Tau fibrils are directly released into the medium and then taken up by co-cultured cells. Internalized Tau aggregates induce fibrillization of intracellular Tau in these naive recipient cells via direct protein-protein contact that we demonstrate using FRET. Tau aggregation can be amplified across several generations of cells. An anti-Tau monoclonal antibody blocks Tau aggregate propagation by trapping fibrils in the extracellular space and preventing their uptake. Thus, propagation of Tau protein misfolding among cells can be mediated by release and subsequent uptake of fibrils that directly contact native protein in recipient cells. These results support the model of aggregate propagation by templated conformational change and suggest a mechanism for vaccine-based therapies in neurodegenerative diseases.


Assuntos
Doença de Alzheimer/metabolismo , Demência Frontotemporal/metabolismo , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Dobramento de Proteína , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Anticorpos Monoclonais Murinos/farmacologia , Anticorpos Neutralizantes/farmacologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Células HEK293 , Humanos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Proteínas tau/antagonistas & inibidores , Proteínas tau/genética
13.
Ann Neurol ; 72(6): 832-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23280834

RESUMO

A new protocol suggests that patients with amyotrophic lateral sclerosis (ALS) are a viable source of tissue for organ transplantation. However, multiple lines of evidence suggest that many neurodegenerative diseases, including ALS, might progress due to transcellular propagation of protein aggregation among neurons. Transmission of the disease state from donor to host thus may be possible under the permissive circumstances of graft transplantation. We argue for careful patient selection and close longitudinal follow-up of recipients when harvesting organs from individuals with neurodegenerative disease, especially dominantly inherited forms.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Doenças Transmissíveis/etiologia , Estudos Longitudinais/métodos , Obtenção de Tecidos e Órgãos , Humanos , Risco , Obtenção de Tecidos e Órgãos/métodos
14.
Neurohospitalist ; 13(3): 290-293, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37441204

RESUMO

Jugular foramen syndrome (JFS) is a lower cranial neuropathy syndrome characterized by dysphonia and dysphagia. The syndrome is caused by dysfunction of the glossopharyngeal, vagus, and spinal accessory nerves at the level of the pars nervosa and pars vascularis within the jugular foramen. There are numerous etiologies for JFS, including malignancy, trauma, vascular, and infection. Here, we present the case of a healthy adult man who developed JFS secondary to an atypical presentation of Varicella Zoster meningitis, and was promptly diagnosed and treated with rapid symptom resolution. We diagnosed the patient using specialized skull-based imaging which detailed the jugular foramen, as well as CSF analysis. This case highlights the clinical value of detailed structural evaluation, consideration for infection in the absence of systemic symptoms, and favorable outcomes following early identification and treatment.

15.
J Neurosci ; 31(37): 13110-7, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21917794

RESUMO

Although tau is a cytoplasmic protein, it is also found in brain extracellular fluids, e.g., CSF. Recent findings suggest that aggregated tau can be transferred between cells and extracellular tau aggregates might mediate spread of tau pathology. Despite these data, details of whether tau is normally released into the brain interstitial fluid (ISF), its concentration in ISF in relation to CSF, and whether ISF tau is influenced by its aggregation are unknown. To address these issues, we developed a microdialysis technique to analyze monomeric ISF tau levels within the hippocampus of awake, freely moving mice. We detected tau in ISF of wild-type mice, suggesting that tau is released in the absence of neurodegeneration. ISF tau was significantly higher than CSF tau and their concentrations were not significantly correlated. Using P301S human tau transgenic mice (P301S tg mice), we found that ISF tau is fivefold higher than endogenous murine tau, consistent with its elevated levels of expression. However, following the onset of tau aggregation, monomeric ISF tau decreased markedly. Biochemical analysis demonstrated that soluble tau in brain homogenates decreased along with the deposition of insoluble tau. Tau fibrils injected into the hippocampus decreased ISF tau, suggesting that extracellular tau is in equilibrium with extracellular or intracellular tau aggregates. This technique should facilitate further studies of tau secretion, spread of tau pathology, the effects of different disease states on ISF tau, and the efficacy of experimental treatments.


Assuntos
Envelhecimento/metabolismo , Líquido Extracelular/metabolismo , Hipocampo/metabolismo , Microdiálise/métodos , Proteínas tau/genética , Proteínas tau/metabolismo , Envelhecimento/líquido cefalorraquidiano , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Modelos Neurológicos , Solubilidade , Proteínas tau/administração & dosagem , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/química
16.
Curr Opin Neurol ; 25(6): 721-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23108252

RESUMO

PURPOSE OF REVIEW: New research on the mechanisms of neurodegeneration highlights parallels between prion disease pathogenesis and other, more common disorders not typically thought to be infectious. This involves propagation of protein misfolding from cell to cell by templated conformational change. This review focuses on the cell biology that underlies propagation of protein aggregation between cells, including a discussion of protein biochemistry and relevant mouse models. RECENT FINDINGS: Like the prion protein, several other proteins exhibit self-propagating fibrillar conformations in vitro. Multiple cellular studies have now implicated endocytic mechanisms in the uptake of aggregates into cells. Aggregates that enter cells somehow escape endocytic vesicles to contact cytosolic protein. The mechanism of release of protein monomers and aggregates from cells is not well understood. Animal models have confirmed that brain lysates and purified protein can accelerate brain pathology in a manner similar to prions. SUMMARY: Aggregate flux in and out of cells likely contributes to the progression of neuropathology in neurodegenerative diseases. A better understanding of these mechanisms is emerging and can help explain local spread of protein aggregation and the role of neural networks in disease. This will also inform new therapeutic strategies aimed at blocking this process.


Assuntos
Encéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Priônicas/metabolismo , Dobramento de Proteína , Animais , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Humanos , Camundongos , Doenças Neurodegenerativas/fisiopatologia , Doenças Priônicas/fisiopatologia
17.
Neurohospitalist ; 12(1): 90-95, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34950393

RESUMO

Acute necrotizing encephalopathy (ANE) is a rare and life-threatening disease. It is caused by a cytokine-mediated injury to the brain with characteristic hemorrhagic and edematous lesions involving the bilateral thalami, brainstem, and other subcortical structures. The disease is commonly associated with antecedent viral triggers such as influenza, parainfluenza, and more recently, SARS-CoV-2, with subsequent neurologic deterioration occurring within days to weeks. Here, we present a case of a pregnant adult woman who developed a hyperacute form of ANE, progressing to brain death within 36 hours of symptom onset. Her diagnosis was confirmed via brain imaging, CSF studies, and neurohistopathological analysis. This case highlights the importance of establishing an early diagnosis for this under-recognized disease, and also suggests an association between ANE and early pregnancy.

18.
Neurohospitalist ; 10(2): 127-132, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32373277

RESUMO

Subacute sclerosing panencephalitis (SSPE) is a rare progressive neuroinfectious disease due to a late complication of the measles virus. The hallmark clinical features of this disease include behavioral changes, myoclonus, dementia, visual disturbances, and pyramidal and extrapyramidal signs. The presence of characteristic high-amplitude periodic complexes on electroencephalography and raised antibody titers against measles in the cerebrospinal fluid help solidify the diagnosis. We present a case of a 40-year-old patient with SSPE who initially developed ophthalmologic manifestations 30 years after the primary measles infection. This case highlights both typical and atypical features of SSPE and provides a diagnostic framework for evaluating cases that fall outside of the standard scope of this disease.

19.
Artigo em Inglês | MEDLINE | ID: mdl-27815306

RESUMO

It is now established that numerous amyloid proteins associated with neurodegenerative diseases, including tau and α-synuclein, have essential characteristics of prions, including the ability to create transmissible cellular pathology in vivo. We have developed cellular bioassays that report on the various features of prion activity using genetic engineering and quantitative fluorescence-based detection systems. We have exploited these biosensors to measure the binding and uptake of tau seeds into cells in culture and to quantify seeding activity in brain samples. These cell models have also been used to propagate tau prion strains indefinitely in culture. In this review, we illustrate the utility of cellular biosensors to gain mechanistic insight into prion transmission and to study neurodegenerative diseases in a reductionist fashion.


Assuntos
Encéfalo/patologia , Doenças Priônicas/transmissão , Príons/patogenicidade , Animais , Técnicas Biossensoriais , Encéfalo/metabolismo , Técnicas de Cultura de Células , Humanos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/genética , Doenças Priônicas/epidemiologia , Doenças Priônicas/etiologia , Príons/genética , Príons/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA