Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 532(7600): 508-511, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27121842

RESUMO

Umbilical cord blood-derived haematopoietic stem cells (HSCs) are essential for many life-saving regenerative therapies. However, despite their advantages for transplantation, their clinical use is restricted because HSCs in cord blood are found only in small numbers. Small molecules that enhance haematopoietic stem and progenitor cell (HSPC) expansion in culture have been identified, but in many cases their mechanisms of action or the nature of the pathways they impinge on are poorly understood. A greater understanding of the molecular circuitry that underpins the self-renewal of human HSCs will facilitate the development of targeted strategies that expand HSCs for regenerative therapies. Whereas transcription factor networks have been shown to influence the self-renewal and lineage decisions of human HSCs, the post-transcriptional mechanisms that guide HSC fate have not been closely investigated. Here we show that overexpression of the RNA-binding protein Musashi-2 (MSI2) induces multiple pro-self-renewal phenotypes, including a 17-fold increase in short-term repopulating cells and a net 23-fold ex vivo expansion of long-term repopulating HSCs. By performing a global analysis of MSI2-RNA interactions, we show that MSI2 directly attenuates aryl hydrocarbon receptor (AHR) signalling through post-transcriptional downregulation of canonical AHR pathway components in cord blood HSPCs. Our study gives mechanistic insight into RNA networks controlled by RNA-binding proteins that underlie self-renewal and provides evidence that manipulating such networks ex vivo can enhance the regenerative potential of human HSCs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Autorrenovação Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Contagem de Células , Autorrenovação Celular/genética , Regulação para Baixo/genética , Feminino , Sangue Fetal/citologia , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais/genética
2.
J Proteome Res ; 20(1): 1052-1062, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33337894

RESUMO

DIX-domain containing 1 (Dixdc1) is an important regulator of neuronal development including cortical neurogenesis, neuronal migration and synaptic connectivity, and sequence variants in the gene have been linked to autism spectrum disorders (ASDs). Previous studies indicate that Dixdc1 controls neurogenesis through Wnt signaling, whereas its regulation of dendrite and synapse development requires Wnt and cytoskeletal signaling. However, the prediction of these signaling pathways is primarily based on the structure of Dixdc1. Given the role of Dixdc1 in neural development and brain disorders, we hypothesized that Dixdc1 may regulate additional signaling pathways in the brain. We performed transcriptomic and proteomic analyses of Dixdc1 KO mouse cortices to reveal such alterations. We found that transcriptomic approaches do not yield any novel findings about the downstream impacts of Dixdc1. In comparison, our proteomic approach reveals that several important mitochondrial proteins are significantly dysregulated in the absence of Dixdc1, suggesting a novel function of Dixdc1.


Assuntos
Transtorno Autístico , Peptídeos e Proteínas de Sinalização Intracelular , Animais , Movimento Celular , Camundongos , Proteínas dos Microfilamentos , Proteômica
3.
Am J Hum Genet ; 102(2): 278-295, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29395074

RESUMO

Copy-number variations (CNVs) are strong risk factors for neurodevelopmental and psychiatric disorders. The 15q13.3 microdeletion syndrome region contains up to ten genes and is associated with numerous conditions, including autism spectrum disorder (ASD), epilepsy, schizophrenia, and intellectual disability; however, the mechanisms underlying the pathogenesis of 15q13.3 microdeletion syndrome remain unknown. We combined whole-genome sequencing, human brain gene expression (proteome and transcriptome), and a mouse model with a syntenic heterozygous deletion (Df(h15q13)/+ mice) and determined that the microdeletion results in abnormal development of cortical dendritic spines and dendrite outgrowth. Analysis of large-scale genomic, transcriptomic, and proteomic data identified OTUD7A as a critical gene for brain function. OTUD7A was found to localize to dendritic and spine compartments in cortical neurons, and its reduced levels in Df(h15q13)/+ cortical neurons contributed to the dendritic spine and dendrite outgrowth deficits. Our results reveal OTUD7A as a major regulatory gene for 15q13.3 microdeletion syndrome phenotypes that contribute to the disease mechanism through abnormal cortical neuron morphological development.


Assuntos
Transtornos Cromossômicos/enzimologia , Transtornos Cromossômicos/genética , Enzimas Desubiquitinantes/fisiologia , Endopeptidases/genética , Deficiência Intelectual/enzimologia , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/enzimologia , Transtornos do Neurodesenvolvimento/genética , Convulsões/enzimologia , Convulsões/genética , Animais , Transtorno do Espectro Autista/genética , Deleção Cromossômica , Cromossomos Humanos Par 15/enzimologia , Cromossomos Humanos Par 15/genética , Espinhas Dendríticas/metabolismo , Enzimas Desubiquitinantes/genética , Endopeptidases/metabolismo , Feminino , Deleção de Genes , Estudos de Associação Genética , Humanos , Masculino , Camundongos , Fenótipo , Prosencéfalo/patologia
4.
J Biol Chem ; 293(19): 7329-7343, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29593095

RESUMO

The proprotein convertase subtilisin/kexin type-9 (PCSK9) plays a central role in cardiovascular disease (CVD) by degrading hepatic low-density lipoprotein receptor (LDLR). As such, loss-of-function (LOF) PCSK9 variants that fail to exit the endoplasmic reticulum (ER) increase hepatic LDLR levels and lower the risk of developing CVD. The retention of misfolded protein in the ER can cause ER stress and activate the unfolded protein response (UPR). In this study, we investigated whether a variety of LOF PCSK9 variants that are retained in the ER can cause ER stress and hepatic cytotoxicity. Although overexpression of these PCSK9 variants caused an accumulation in the ER of hepatocytes, UPR activation or apoptosis was not observed. Furthermore, ER retention of endogenous PCSK9 via splice switching also failed to induce the UPR. Consistent with these in vitro studies, overexpression of PCSK9 in the livers of mice had no impact on UPR activation. To elucidate the cellular mechanism to explain these surprising findings, we observed that the 94-kDa glucose-regulated protein (GRP94) sequesters PCSK9 away from the 78-kDa glucose-regulated protein (GRP78), the major activator of the UPR. As a result, GRP94 knockdown increased the stability of GRP78-PCSK9 complex and resulted in UPR activation following overexpression of ER-retained PCSK9 variants relative to WT secreted controls. Given that overexpression of these LOF PCSK9 variants does not cause UPR activation under normal homeostatic conditions, therapeutic strategies aimed at blocking the autocatalytic cleavage of PCSK9 in the ER represent a viable strategy for reducing circulating PCSK9.


Assuntos
Estresse do Retículo Endoplasmático/genética , Proteínas de Choque Térmico/metabolismo , Mutação com Perda de Função , Pró-Proteína Convertase 9/genética , Resposta a Proteínas não Dobradas/genética , Animais , Apoptose , Domínio Catalítico , Linhagem Celular , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Técnicas de Silenciamento de Genes , Hepatócitos/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Pró-Proteína Convertase 9/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , Splicing de RNA
5.
J Gastrointest Oncol ; 14(1): 379-389, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36915452

RESUMO

Background: Cholangiocarcinoma (CCA) is a molecularly heterogenous disease that is often fatal. Whole genome sequencing (WGS) can provide additional knowledge of mutational spectra compared with panel sequencing. We describe the molecular landscape of CCA using whole-genome sequencing and compare the mutational landscape between short-term and long-term survivors. Methods: We explored molecular differences between short-term and long-term survivors by performing WGS on 20 patient samples from our biliary tract cancer database. Short-term survivors were enriched for cases with underlying primary sclerosing cholangitis (PSC) and patients with cirrhosis. All samples underwent tumour epithelial enrichment using laser capture microdissection (LCM). Results: Dominant single base substitution (SBS) signatures across the cohort included SBS1 and SBS5, with the latter more prevalent in long-term survivors. SBS17 was evident in 3 cases, all of whom had underlying ulcerative colitis (UC) with PSC. Additional rare signatures included SBS3 in a patient treated for prior mantle cell lymphoma and SBS26/SBS6 in a patient with a tumor mutational burden of 33 mutations/Mb and a pathogenic MLH1 germline mutation. Somatic TP53 inactivating mutations were present in 8/10 (80%) short-term survivors and in none of the long-term survivors. Additional mutations occurred in KRAS, SMAD4, CDKN2A, and chromatin remodelling genes. The long-term survivor group harboured predicted fusions in FGFR (n=2) and pathogenic mutations in BRAF and IDH1 (n=2). Conclusions: TP53 alterations are associated with poor outcomes in patients with CCA. Patients with underlying inflammatory/autoimmune conditions may be enriched for unique tumour mutational signatures.

6.
Cancer Res ; 79(22): 5799-5811, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31519687

RESUMO

Eliminating leukemic stem cells (LSC) is a sought after therapeutic paradigm for the treatment of acute myeloid leukemia (AML). While repression of aryl hydrocarbon receptor (AHR) signaling has been shown to promote short-term maintenance of primitive AML cells in culture, no work to date has examined whether altered AHR signaling plays a pathologic role in human AML or whether it contributes at all to endogenous LSC function. Here, we show AHR signaling is repressed in human AML blasts and preferentially downregulated in LSC-enriched populations within leukemias. A core set of AHR targets are uniquely repressed in LSCs across diverse genetic AML subtypes. In vitro and in vivo administration of the specific AHR agonist FICZ significantly impaired leukemic growth, promoted differentiation, and repressed self-renewal. Furthermore, LSCs suppressed a set of FICZ-responsive AHR target genes that function as tumor suppressors and promoters of differentiation. FICZ stimulation did not impair normal hematopoietic stem and progenitor (HSPC) function, and failed to upregulate a prominent LSC-specific AHR target in HSPCs, suggesting that differential mechanisms govern FICZ-induced AHR signaling manifestations in HSCs versus LSCs. Altogether, this work highlights AHR signaling suppression as a key LSC-regulating control mechanism and provides proof of concept in a preclinical model that FICZ-mediated AHR pathway activation enacts unique transcriptional programs in AML that identify it as a novel chemotherapeutic approach to selectively target human LSCs. SIGNIFICANCE: The AHR pathway is suppressed in leukemic stem cells (LSC), therefore activating AHR signaling is a potential therapeutic option to target LSCs and to treat acute myeloid leukemia.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Leucemia Mieloide Aguda/genética , Células-Tronco Neoplásicas/patologia , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais/genética , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Regiões Promotoras Genéticas/genética
7.
Mol Metab ; 27: 62-74, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31288993

RESUMO

OBJECTIVE: Growth differentiation factors (GDFs) and bone-morphogenic proteins (BMPs) are members of the transforming growth factor ß (TGFß) superfamily and are known to play a central role in the growth and differentiation of developing tissues. Accumulating evidence, however, demonstrates that many of these factors, such as BMP-2 and -4, as well as GDF15, also regulate lipid metabolism. GDF10 is a divergent member of the TGFß superfamily with a unique structure and is abundantly expressed in brain and adipose tissue; it is also secreted by the latter into the circulation. Although previous studies have demonstrated that overexpression of GDF10 reduces adiposity in mice, the role of circulating GDF10 on other tissues known to regulate lipid, like the liver, has not yet been examined. METHODS: Accordingly, GDF10-/- mice and age-matched GDF10+/+ control mice were fed either normal control diet (NCD) or high-fat diet (HFD) for 12 weeks and examined for changes in liver lipid homeostasis. Additional studies were also carried out in primary and immortalized human hepatocytes treated with recombinant human (rh)GDF10. RESULTS: Here, we show that circulating GDF10 levels are increased in conditions of diet-induced hepatic steatosis and, in turn, that secreted GDF10 can prevent excessive lipid accumulation in hepatocytes. We also report that GDF10-/- mice develop an obese phenotype as well as increased liver triglyceride accumulation when fed a NCD. Furthermore, HFD-fed GDF10-/- mice develop increased steatosis, endoplasmic reticulum (ER) stress, fibrosis, and injury of the liver compared to HFD-fed GDF10+/+ mice. To explain these observations, studies in cultured hepatocytes led to the observation that GDF10 attenuates nuclear peroxisome proliferator-activated receptor γ (PPARγ) activity; a transcription factor known to induce de novo lipogenesis. CONCLUSION: Our work delineates a hepatoprotective role of GDF10 as an adipokine capable of regulating hepatic lipid levels by blocking de novo lipogenesis to protect against ER stress and liver injury.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fator 10 de Diferenciação de Crescimento/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR gama/metabolismo , Animais , Ácidos Graxos/metabolismo , Fator 10 de Diferenciação de Crescimento/sangue , Células Hep G2 , Humanos , Lipogênese , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/etiologia
8.
Cell Rep ; 17(7): 1892-1904, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27829159

RESUMO

The development of neural connectivity is essential for brain function, and disruption of this process is associated with autism spectrum disorders (ASDs). DIX domain containing 1 (DIXDC1) has previously been implicated in neurodevelopmental disorders, but its role in postnatal brain function remains unknown. Using a knockout mouse model, we determined that DIXDC1 is a regulator of excitatory neuron dendrite development and synapse function in the cortex. We discovered that MARK1, previously linked to ASDs, phosphorylates DIXDC1 to regulate dendrite and spine development through modulation of the cytoskeletal network in an isoform-specific manner. Finally, rare missense variants in DIXDC1 were identified in ASD patient cohorts via genetic sequencing. Interestingly, the variants inhibit DIXDC1 isoform 1 phosphorylation, causing impairment to dendrite and spine growth. These data reveal that DIXDC1 is a regulator of cortical dendrite and synaptic development and provide mechanistic insight into morphological defects associated with neurodevelopmental disorders.


Assuntos
Dendritos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação/genética , Animais , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microtúbulos/metabolismo , Mutação de Sentido Incorreto/genética , Fosforilação , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA