Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 42(2): 271-274, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28081090

RESUMO

We address the challenge of increasing the bandwidth of high-finesse femtosecond enhancement cavities and demonstrate a broad spectrum spanning 1800 cm-1 (195 nm) at -10 dB around a central wavelength of 1050 nm in an EC with an average finesse exceeding 300. This will benefit a host of spectroscopic applications, including transient absorption spectroscopy, direct frequency comb spectroscopy, and Raman spectroscopy. The pulse circulating in the EC is composed of only 5.4 optical cycles, at a kilowatt-level average power. Together with a suitable gating technique, this paves the way to the efficient generation of multi-megahertz-repetition-rate isolated extreme ultraviolet attosecond pulses via intracavity high-order harmonic generation.

2.
Appl Phys B ; 123(1): 17, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32214687

RESUMO

We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to ~30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.

3.
Opt Lett ; 40(10): 2165-8, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26393690

RESUMO

The optimal enhancement of broadband optical pulses in a passive resonator requires a seeding pulse train with a specific carrier-envelope-offset frequency. Here, we control the phase of the cavity mirrors to tune the offset frequency for which a given comb is optimally enhanced. This enables the enhancement of a zero-offset-frequency train of sub-30-fs pulses to multi-kW average powers. The combination of pulse duration, power, and zero phase slip constitutes a crucial step toward the generation of attosecond pulses at multi-10-MHz repetition rates. In addition, this control affords the enhancement of pulses generated by difference-frequency mixing, e.g., for mid-infrared spectroscopy.

4.
Opt Lett ; 40(5): 843-6, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25723447

RESUMO

Thermal lensing poses a serious challenge for the power scaling of enhancement cavities, in particular when these contain transmissive elements. We demonstrate the compensation of the lensing induced by thermal deformations of the cavity mirrors with the thermal lensing in a thin Brewster plate. Using forced convection to fine-tune the lensing in the plate, we achieve average powers of up to 160 kW for 250-MHz-repetition-rate picosecond pulses with a power-independent mode size. Furthermore, we show that the susceptibility of the cavity mode size to thermal lensing allows highly sensitive absorption measurements.

5.
Phys Rev Lett ; 115(2): 023902, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26207470

RESUMO

We combine high-finesse optical resonators and spatial-spectral interferometry to a highly phase-sensitive investigation technique for nonlinear light-matter interactions. We experimentally validate an ab initio model for the nonlinear response of a resonator housing a gas target, permitting the global optimization of intracavity conversion processes like high-order harmonic generation. We predict the feasibility of driving intracavity high-order harmonic generation far beyond intensity limitations observed in state-of-the-art systems by exploiting the intracavity nonlinearity to compress the pulses in time.

6.
Opt Lett ; 39(9): 2595-8, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24784054

RESUMO

We investigate power scaling of ultrashort-pulse enhancement cavities. We propose a model for the sensitivity of a cavity design to thermal deformations of the mirrors due to the high circulating powers. Using this model and optimized cavity mirrors, we demonstrate 400 kW of average power with 250 fs pulses and 670 kW with 10 ps pulses at a central wavelength of 1040 nm and a repetition rate of 250 MHz. These results represent an average power improvement of one order of magnitude compared to state-of-the-art systems with similar pulse durations and will thus benefit numerous applications such as the further scaling of tabletop sources of hard x rays (via Thomson scattering of relativistic electrons) and of soft x rays (via high harmonic generation).

7.
Phys Rev Lett ; 112(10): 103902, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24679296

RESUMO

We theoretically and experimentally investigate high-harmonic generation in a 78-MHz enhancement cavity with a transverse mode having on-axis intensity maxima at the focus and minima at an opening in the following mirror. We find that the conversion efficiency is comparable to that achievable with a Gaussian mode, whereas the output coupling efficiency can be significantly improved over any other demonstrated technique. This approach offers additional power scaling advantages and additional degrees of freedom in shaping the harmonic emission, paving the way to high-power extreme-ultraviolet frequency combs and the generation of multi-MHz repetition-rate-isolated attosecond pulses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA