Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 299(1): 102720, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410440

RESUMO

Cancer cells, including those of prostate cancer (PCa), often hijack intrinsic cell signaling to reprogram their metabolism. Part of this reprogramming includes the activation of de novo synthesis of fatty acids that not only serve as building blocks for membrane synthesis but also as energy sources for cell proliferation. However, how de novo fatty acid synthesis contributes to PCa progression is still poorly understood. Herein, by mining public datasets, we discovered that the expression of acetyl-CoA carboxylase alpha (ACACA), which encodes acetyl-CoA carboxylase 1 (ACC1), was highly expressed in human PCa. In addition, patients with high ACACA expression had a short disease-free survival time. We also reported that depletion of ACACA reduced de novo fatty acid synthesis and PI3K/AKT signaling in the human castration-resistant PCa (CRPC) cell lines DU145 and PC3. Furthermore, depletion of ACACA downregulates mitochondrial beta-oxidation, resulting in mitochondrial dysfunction, a reduction in ATP production, an imbalanced NADP+/NADPhydrogen(H) ratio, increased reactive oxygen species, and therefore apoptosis. Reduced exogenous fatty acids by depleting lipid or lowering serum supplementation exacerbated both shRNA depletion and pharmacological inhibition of ACACA-induced apoptosis in vitro. Collectively, our results suggest that inhibition of ectopic ACACA, together with suppression of exogenous fatty acid uptake, can be a novel strategy for treating currently incurable CRPC.


Assuntos
Acetil-CoA Carboxilase , Ácidos Graxos , Mitocôndrias , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Acetil-CoA Carboxilase/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/genética , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Linhagem Celular Tumoral
2.
Cancer Sci ; 112(10): 4365-4376, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34252262

RESUMO

A substantial proportion of prostatic adenocarcinoma (PRAD) patients experience biochemical failure (BCF) after radical prostatectomy (RP). The immune microenvironment plays a vital role in carcinogenesis and the development of PRAD. This study aimed to identify a novel immune-related gene (IRG)-based signature for risk stratification and prognosis of BCF in PRAD. Weighted gene coexpression network analysis was carried out to identify a BCF-related module in a discovery cohort of patients who underwent RP at the Massachusetts General Hospital. The median follow-up time was 70.32 months. Random forest and multivariate stepwise Cox regression analyses were used to identify an IRG-based signature from the specific module. Risk plot analyses, Kaplan-Meier curves, receiver operating characteristic curves, univariate and multivariate Cox regression analyses, stratified analysis, and Harrell's concordance index were used to assess the prognostic value and predictive accuracy of the IRG-based signature in the internal discovery cohort; The Cancer Genome Atlas database was used as a validation cohort. Tumor immune estimation resource database analysis and CIBERSORT algorithm were used to assess the immunophenotype of PRAD. A novel IRG-based signature was identified from the specific module. Five IRGs (BUB1B, NDN, NID1, COL4A6, and FLRT2) were verified as components of the risk signature. The IRG-based signature showed good prognostic value and predictive accuracy in both the discovery and validation cohorts. Infiltrations of various immune cells were significantly different between low-risk and high-risk groups in PRAD. We identified a novel IRG-based signature that could function as an index for assessing tumor immune status and risk stratification in PRAD.


Assuntos
Adenocarcinoma/genética , Redes Reguladoras de Genes , Antígenos HLA/genética , Neoplasias da Próstata/genética , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Adenocarcinoma/cirurgia , Proteínas de Ciclo Celular/genética , Estudos de Coortes , Colágeno Tipo IV/genética , Seguimentos , Perfilação da Expressão Gênica , Marcadores Genéticos , Humanos , Imunidade Celular , Imunofenotipagem , Estimativa de Kaplan-Meier , Masculino , Glicoproteínas de Membrana/genética , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Prognóstico , Antígeno Prostático Específico/sangue , Prostatectomia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Proteínas Serina-Treonina Quinases/genética , Curva ROC , Análise de Regressão , Medição de Risco , Falha de Tratamento , Microambiente Tumoral/imunologia , Proteínas Supressoras de Tumor/genética
3.
Transl Androl Urol ; 11(7): 914-928, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35958903

RESUMO

Background: Even though emerging studies supplied evidence that Adhesion Molecule with Ig Like Domain family 2 (AMIGO2) plays a critical role in numerous cancers, comprehensive analysis of the prognostic value and significant role of AMIGO2 in prostate cancer (PCa) have not been described. Methods: Differentially expressed analysis, survival analysis and univariate cox regression analysis were first performed to explore the diagnostic and prognostic role of AMIGO2 in various cancers, especially in PCa. Tissue microarray were used to examined the association between AMGIO2 and clinical features. Multivariate cox regression analysis, concordance index, nomogram construction, the receiver operator characteristic curve and calibration curves were further used to discover the effects of AMIGO2 on recurrence-free survival (RFS) and clinicopathological characteristics, including age, Gleason score (GS) and tumor stage. Genetic and Epigenetic Alterations analysis were further conducted to explore the potential effect of AMIGO2 in PCa and examined by biological function analysis and in vitro experiments. Results: AMIGO2 was associated with poor RFS (P<0.05) and differentially expressed (P<0.05) in multiple cancer type, especially in PCa. Besides, decreasing the expression of AMIGO2 inhibited PCa cell proliferation and colony formation in vitro. In addition, AMIGO2 was a reliable prognostic marker providing additional information (C-index: 0.7) that supplement the currently used prognosis evaluation system, e.g., T stage (C-index: 0.62) and GS (C-index: 0.65). A novel nomogram was established based on AMIGO2, tumor stage and GS with accuracies (areas under curve) of 0.70, 0.78 and 0.82 for predicting 3-, 5- and 7-year RFS, respectively. Bioinformatic analysis and in vitro examination also suggested that AMIGO2 might involve in the progression of PCa tumors inducing epithelial mesenchymal transition (EMT). Conclusions: We identified AMIGO2 as a pan-cancer gene that could not only be a prognostic biomarker in various cancers, especially in PCa, but may functionally promoting PCa progression via EMT and mediating docetaxel resistance, suggesting AMIGO2 as a potential target for future treatment of PCa.

4.
Transl Androl Urol ; 10(9): 3579-3590, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34733654

RESUMO

BACKGROUND: The incidence of bladder cancer (BCa) in male is approximately three to four times higher than in female, but the oncological outcomes in female patients with BCa are significantly worse than in male patients. Although many biomarkers have been identified in recent decades to predict the prognosis of BCa patients, few of them are able to distinguish the prognosis of BCa patients with gender difference. Aromatase encoded by the CYP19A1 gene catalyzes the conversion of androgens to estrogens. In this study, we investigate the prognosis significance of CYP19A1 expression considering the gender difference in BCa patients from four available public databases. METHODS: Four available public databases of BCa, including GSE13507, TCGA-BLCA, E-MTAB-4321, and E-MTAB-1803, were utilized in this analysis. The overall survival (OS) and progression-free survival (PFS) in different stages and genders were evaluated using the Kaplan-Meier analysis based on the optimal cut-off values of CYP19A1 expression. Then, Gene Set Enrichment Analysis (GSEA) were further performed to explore the potential biologic pathways by altering CYP19A1 expression in BCa patients. RESULTS: The results showed that patients with high CYP19A1 expression had a poorer outcome compared with those with low expression in both BCa cohorts in general. Higher CYP19A1 expression in male patients were significantly associated with shorter survival for either non-muscle-invasive bladder cancer (NMIBC) or muscle-invasive bladder cancer (MIBC). However, female NMIBC patients with high CYP19A1 expression were identified to have a better prognosis, whereas high CYP19A1 expression in female MIBC patients were significantly associated with poorer survival. The result of the GSEA showed that different outcomes in female and male patients with NMIBC were related to the interaction of CYP19A1 and the cell-cycle-related pathways. CONCLUSIONS: These findings demonstrated that CYP19A1 expression might have a potential role in distinguishing the prognosis of female BCa patients dependent on tumor stage. Our results provide new insights for aromatase-mediated BCa therapy.

5.
J Exp Clin Cancer Res ; 40(1): 188, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098990

RESUMO

BACKGROUND: Hypoxia signaling, especially the hypoxia inducible factor (HIF) pathway, is a major player in clear cell renal cell carcinoma (ccRCC), which is characterized by disorders in lipid and glycogen metabolism. However, the interaction between hypoxia and lipid metabolism in ccRCC progression is still poorly understood. METHODS: We used bioinformatic analysis and discovered that glycerol-3-phosphate dehydrogenase 1 (GPD1) may play a key role in hypoxia and lipid metabolism pathways in ccRCC. Tissue microarray, IHC staining, and survival analysis were performed to evaluate clinical function. In vitro and in vivo assays showed the biological effects of GPD1 in ccRCC progression. RESULTS: We found that the expression of GPD1 was downregulated in ccRCC tissues, and overexpression of GPD1 inhibited the progression of ccRCC both in vivo and in vitro. Furthermore, we demonstrated that hypoxia inducible factor-1α (HIF1α) directly regulates GPD1 at the transcriptional level, which leads to the inhibition of mitochondrial function and lipid metabolism. Additionally, GPD1 was shown to inhibit prolyl hydroxylase 3 (PHD3), which blocks prolyl-hydroxylation of HIF1α and subsequent proteasomal degradation, and thus reinforces the inhibition of mitochondrial function and phosphorylation of AMPK via suppressing glycerol-3-phosphate dehydrogenase 2 (GPD2). CONCLUSIONS: This study not only demonstrated that HIF1α-GPD1 forms a positive feedforward loop inhibiting mitochondrial function and lipid metabolism in ccRCC, but also discovered a new mechanism for the molecular basis of HIF1α to inhibit tumor activity, thus providing novel insights into hypoxia-lipid-mediated ccRCC therapy.


Assuntos
Carcinoma de Células Renais/genética , Glicerolfosfato Desidrogenase/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mitocôndrias/genética , Quinases Proteína-Quinases Ativadas por AMP/genética , Idoso , Animais , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Transdução de Sinais/genética , Hipóxia Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA