Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 51(16): e86, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37548401

RESUMO

In adaptive immune receptor repertoire analysis, determining the germline variable (V) allele associated with each T- and B-cell receptor sequence is a crucial step. This process is highly impacted by allele annotations. Aligning sequences, assigning them to specific germline alleles, and inferring individual genotypes are challenging when the repertoire is highly mutated, or sequence reads do not cover the whole V region. Here, we propose an alternative naming scheme for the V alleles, as well as a novel method to infer individual genotypes. We demonstrate the strengths of the two by comparing their outcomes to other genotype inference methods. We validate the genotype approach with independent genomic long-read data. The naming scheme is compatible with current annotation tools and pipelines. Analysis results can be converted from the proposed naming scheme to the nomenclature determined by the International Union of Immunological Societies (IUIS). Both the naming scheme and the genotype procedure are implemented in a freely available R package (PIgLET https://bitbucket.org/yaarilab/piglet). To allow researchers to further explore the approach on real data and to adapt it for their uses, we also created an interactive website (https://yaarilab.github.io/IGHV_reference_book).


Assuntos
Genômica , Cadeias Pesadas de Imunoglobulinas , Receptores de Antígenos de Linfócitos B , Alelos , Genótipo , Receptores de Antígenos de Linfócitos B/genética , Cadeias Pesadas de Imunoglobulinas/genética
2.
J Immunol ; 208(12): 2713-2725, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623663

RESUMO

The immune system matures throughout childhood to achieve full functionality in protecting our bodies against threats. The immune system has a strong reciprocal symbiosis with the host bacterial population and the two systems co-develop, shaping each other. Despite their fundamental role in health physiology, the ontogeny of these systems is poorly characterized. In this study, we investigated the development of the BCR repertoire by analyzing high-throughput sequencing of their receptors in several time points of young C57BL/6J mice. In parallel, we explored the development of the gut microbiome. We discovered that the gut IgA repertoires change from birth to adolescence, including an increase in CDR3 lengths and somatic hypermutation levels. This contrasts with the spleen IgM repertoires that remain stable and distinct from the IgA repertoires in the gut. We also discovered that large clones that germinate in the gut are initially confined to a specific gut compartment, then expand to nearby compartments and later on expand also to the spleen and remain there. Finally, we explored the associations between diversity indices of the B cell repertoires and the microbiome, as well as associations between bacterial and BCR clusters. Our results shed light on the ontogeny of the adaptive immune system and the microbiome, providing a baseline for future research.


Assuntos
Microbiota , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Imunoglobulina A/genética , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos B/genética
3.
Mol Microbiol ; 102(1): 1-21, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27161313

RESUMO

Under persistent ER stress, Trypanosoma brucei parasites induce the spliced leader silencing (SLS) pathway. In SLS, transcription of the SL RNA gene, the SL donor to all mRNAs, is extinguished, arresting trans-splicing and leading to programmed cell death (PCD). In this study, we investigated the transcriptome following silencing of SEC63, a factor essential for protein translocation across the ER membrane, and whose silencing induces SLS. The proteome of SEC63-silenced cells was analyzed with an emphasis on SLS-specific alterations in protein expression, and modifications that do not directly result from perturbations in trans-splicing. One such protein identified is an atypical calpain SKCRP7.1/7.2. Co-silencing of SKCRP7.1/7.2 and SEC63 eliminated SLS induction due its role in translocating the PK3 kinase. This kinase initiates SLS by migrating to the nucleus and phosphorylating TRF4 leading to shut-off of SL RNA transcription. Thus, SKCRP7.1 is involved in SLS signaling and the accompanying PCD. The role of autophagy in SLS was also investigated; eliminating autophagy through VPS34 or ATG7 silencing demonstrated that autophagy is not essential for SLS induction, but is associated with PCD. Thus, this study identified factors that are used by the parasite to cope with ER stress and to induce SLS and PCD.


Assuntos
Calpaína/metabolismo , RNA Líder para Processamento/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Apoptose/fisiologia , Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Inativação Gênica/fisiologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fosforilação , Transporte Proteico , Proteoma , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Interferência de RNA , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Líder para Processamento/antagonistas & inibidores , Transcriptoma , Trypanosoma brucei brucei/citologia , Resposta a Proteínas não Dobradas
4.
PLoS Pathog ; 6(1): e1000731, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20107599

RESUMO

Trypanosomes are parasites that cycle between the insect host (procyclic form) and mammalian host (bloodstream form). These parasites lack conventional transcription regulation, including factors that induce the unfolded protein response (UPR). However, they possess a stress response mechanism, the spliced leader RNA silencing (SLS) pathway. SLS elicits shut-off of spliced leader RNA (SL RNA) transcription by perturbing the binding of the transcription factor tSNAP42 to its cognate promoter, thus eliminating trans-splicing of all mRNAs. Induction of endoplasmic reticulum (ER) stress in procyclic trypanosomes elicits changes in the transcriptome similar to those induced by conventional UPR found in other eukaryotes. The mechanism of up-regulation under ER stress is dependent on differential stabilization of mRNAs. The transcriptome changes are accompanied by ER dilation and elevation in the ER chaperone, BiP. Prolonged ER stress induces SLS pathway. RNAi silencing of SEC63, a factor that participates in protein translocation across the ER membrane, or SEC61, the translocation channel, also induces SLS. Silencing of these genes or prolonged ER stress led to programmed cell death (PCD), evident by exposure of phosphatidyl serine, DNA laddering, increase in reactive oxygen species (ROS) production, increase in cytoplasmic Ca(2+), and decrease in mitochondrial membrane potential, as well as typical morphological changes observed by transmission electron microscopy (TEM). ER stress response is also induced in the bloodstream form and if the stress persists it leads to SLS. We propose that prolonged ER stress induces SLS, which serves as a unique death pathway, replacing the conventional caspase-mediated PCD observed in higher eukaryotes.


Assuntos
Apoptose/genética , Retículo Endoplasmático/patologia , Regulação da Expressão Gênica/genética , Inativação Gênica/fisiologia , RNA Líder para Processamento/genética , Trypanosoma brucei brucei/fisiologia , Northern Blotting , Western Blotting , Fragmentação do DNA , Retículo Endoplasmático/metabolismo , Eucariotos , Imunofluorescência , Marcação In Situ das Extremidades Cortadas , Potencial da Membrana Mitocondrial , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Resposta a Proteínas não Dobradas/fisiologia
5.
mBio ; 12(6): e0260221, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34844425

RESUMO

In the parasite Trypanosoma brucei, the causative agent of human African sleeping sickness, all mRNAs are trans-spliced to generate a common 5' exon derived from the spliced leader (SL) RNA. Perturbations of protein translocation across the endoplasmic reticulum (ER) induce the spliced leader RNA silencing (SLS) pathway. SLS activation is mediated by a serine-threonine kinase, PK3, which translocates from the cytosolic face of the ER to the nucleus, where it phosphorylates the TATA-binding protein TRF4, leading to the shutoff of SL RNA transcription, followed by induction of programmed cell death. Here, we demonstrate that SLS is also induced by depletion of the essential ER-resident chaperones BiP and calreticulin, ER oxidoreductin 1 (ERO1), and the Golgi complex-localized quiescin sulfhydryl oxidase (QSOX). Most strikingly, silencing of Rhomboid-like 1 (TIMRHOM1), involved in mitochondrial protein import, also induces SLS. The PK3 kinase, which integrates SLS signals, is modified by phosphorylation on multiple sites. To determine which of the phosphorylation events activate PK3, several individual mutations or their combination were generated. These mutations failed to completely eliminate the phosphorylation or translocation of the kinase to the nucleus. The structures of PK3 kinase and its ATP binding domain were therefore modeled. A conserved phenylalanine at position 771 was proposed to interact with ATP, and the PK3F771L mutation completely eliminated phosphorylation under SLS, suggesting that the activation involves most if not all of the phosphorylation sites. The study suggests that the SLS occurs broadly in response to failures in protein sorting, folding, or modification across multiple compartments. IMPORTANCE In this study, we found that SLS is induced by depletion of the essential ER-resident chaperones BiP and calreticulin, ER oxidoreductin 1 (ERO1), and the Golgi complex-localized quiescin sulfhydryl oxidase (QSOX). Most strikingly, silencing of Rhomboid-like 1 (TIMRHOM1), involved in mitochondrial protein import, also induces SLS. We also report on the autophosphorylation of PK3 during SLS induction. This study has implications for our understanding of how trypanosomes keep the homeostasis between the ER and the mitochondria and suggests that PK3 may participate in the connection between these two organelles. The pathway, when induced, leads to the suicide of these parasites, and its induction offers a potential novel drug target against these parasites.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Protozoários/metabolismo , RNA de Protozoário/genética , RNA Líder para Processamento/genética , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/parasitologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Retículo Endoplasmático/genética , Complexo de Golgi/genética , Humanos , Proteínas Mitocondriais/genética , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Proteínas de Protozoários/genética , Interferência de RNA , Splicing de RNA , RNA de Protozoário/metabolismo , RNA Líder para Processamento/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/metabolismo
6.
J Immunol Methods ; 465: 67-71, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30471299

RESUMO

Recombinant antibodies serve as therapeutic molecules for a broad range of applications. High affinity antibodies are typically isolated following an active and effective immunization. Human-like antibodies may be obtained from immunized nonhuman primates (NHP), such as rhesus macaque, when immunized human origin is not available. For the isolation of such antibodies, strategies like phage and yeast display, are employed. These strategies are primarily based on the amplification of the rearranged variable (V) regions coded by mRNA, obtained from lymphatic source of immunized animals. To amplify these genomic sequences, designated set of primers are required, ideally covering the immune animal V-gene repertoire. Such primer sets are commonly designed based on the germline repertoire of specific animals according to immunoglobulin databases. However, In case of rhesus macaque, however, the known immunoglobulin germline V-gene database is still limited. The emergence and continuous improvements in high-throughput sequencing (HTS) technologies now enable the profiling of an immune repertoire for both basic and applicative studies, among which is the identification and expression of novel alleles. We report here on the profiling of non-immunized rhesus macaque (Macaca mulatta) expressed antibody repertoire, using HTS and advanced tailored bioinformatics tools. This analysis resulted in 32,480 and 73,354 complete heavy and light variable gene (VH and VL) sequences, respectively. Further analysis of these sequences, using the IgDiscover tool, resulted in the identification of 102, 214 and 48 inferred VH, Vκ and Vλ germline sequences, respectively, of which over 50% are novel alleles. This dataset, together with other recently published datasets, enabled the design of a comprehensive primer set (v2018), which demonstrated the broadest coverage of rhesus macaque germline genes identified up to date. The newly designed primer set was confirmed for its extent of coverage of the V-genes in various datasets of rhesus macaque germlines as well as the expressed repertoire mapped in this study. Among other things, an improvement of 28% and 50% in the coverage of the VH and VL expressed repertoire was demonstrated in comparison to a primer set we have previously designed. This primer set can be further used for various applications that require the complete coverage of the NHP V-gene repertoire.


Assuntos
Primers do DNA , Bases de Dados de Ácidos Nucleicos , Sequenciamento de Nucleotídeos em Larga Escala , Região Variável de Imunoglobulina/genética , Técnicas de Amplificação de Ácido Nucleico , Animais , Primers do DNA/química , Humanos , Macaca mulatta
7.
Front Immunol ; 9: 3004, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30622532

RESUMO

Hepatitis C virus (HCV) is a major public health concern, with over 70 million people infected worldwide, who are at risk for developing life-threatening liver disease. No vaccine is available, and immunity against the virus is not well-understood. Following the acute stage, HCV usually causes chronic infections. However, ~30% of infected individuals spontaneously clear the virus. Therefore, using HCV as a model for comparing immune responses between spontaneous clearer (SC) and chronically infected (CI) individuals may empower the identification of mechanisms governing viral infection outcomes. Here, we provide the first in-depth analysis of adaptive immune receptor repertoires in individuals with current or past HCV infection. We demonstrate that SC individuals, in contrast to CI patients, develop clusters of antibodies with distinct properties. These antibodies' characteristics were used in a machine learning framework to accurately predict infection outcome. Using combinatorial antibody phage display library technology, we identified HCV-specific antibody sequences. By integrating these data with the repertoire analysis, we constructed two antibodies characterized by high neutralization breadth, which are associated with clearance. This study provides insight into the nature of effective immune response against HCV and demonstrates an innovative approach for constructing antibodies correlating with successful infection clearance. It may have clinical implications for prognosis of the future status of infection, and the design of effective immunotherapies and a vaccine for HCV.


Assuntos
Anticorpos Neutralizantes/análise , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/análise , Hepatite C Crônica/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Linhagem Celular Tumoral , Biologia Computacional , Conjuntos de Dados como Assunto , Hepacivirus/isolamento & purificação , Anticorpos Anti-Hepatite C/genética , Anticorpos Anti-Hepatite C/imunologia , Hepatite C Crônica/sangue , Hepatite C Crônica/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Aprendizado de Máquina , Biblioteca de Peptídeos , Prognóstico , Remissão Espontânea , Proteínas do Envelope Viral/imunologia
8.
Sci Signal ; 7(341): ra85, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25185157

RESUMO

The parasite Trypanosoma brucei is the causative agent of human African sleeping sickness. T. brucei genes are constitutively transcribed in polycistronic units that are processed by trans-splicing and polyadenylation. All mRNAs are trans-spliced to generate mRNAs with a common 5' exon derived from the spliced leader RNA (SL RNA). Persistent endoplasmic reticulum (ER) stress induces the spliced leader silencing (SLS) pathway, which inhibits trans-splicing by silencing SL RNA transcription, and correlates with increased programmed cell death. We found that during ER stress induced by SEC63 silencing or low pH, the serine-threonine kinase PK3 translocated from the ER to the nucleus, where it phosphorylated the TATA-binding protein TRF4, leading to the dissociation of the transcription preinitiation complex from the promoter of the SL RNA encoding gene. PK3 loss of function attenuated programmed cell death induced by ER stress, suggesting that SLS may contribute to the activation of programmed cell death.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Protozoários/metabolismo , RNA Líder para Processamento , Proteína de Ligação a TATA-Box/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , Apoptose , Núcleo Celular/metabolismo , Estresse do Retículo Endoplasmático , Éxons , Regulação da Expressão Gênica , Inativação Gênica , Concentração de Íons de Hidrogênio , Fosforilação , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Transcrição Gênica , Trypanosoma brucei brucei/genética
9.
Antivir Chem Chemother ; 20(2): 87-98, 2009 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-19843979

RESUMO

BACKGROUND: Herpes simplex virus (HSV) establishes latent infection in humans with periodic reactivation. Acyclovir, valacyclovir and foscarnet are in medical use today against HSV type-1 (HSV-1) and type-2 (HSV-2), inhibiting the DNA synthesis of the viruses. Additional drugs that will affect the growth of these viruses by other mechanisms and also decrease the frequency of appearance of drug-resistant mutants are required. METHODS: Cationic polysaccharides were synthesized by conjugation of various oligoamines to oxidized polysaccharides by reductive amination. Polycations of dextran, pullulan and arabinogalactan were grafted with oligoamines of 2-4 amino groups forming Schiff-base imine-based conjugates followed by reduction with borohydride to obtain the stable amine-based conjugate. Evaluation of toxicity to BS-C-1 cells and antiviral activity against HSV-1 and HSV-2 of the different compounds was performed in vitro by a semiquantitative assay. A quantitative study with a selected compound followed. RESULTS: Structure-activity relationship studies showed that the nature of the grafted oligoamine of the polycation plays an essential role in the antiviral activity against HSV-1 and HSV-2. Dextran-propan-1,3-diamine (DPD) was found to be the most potent of all the compounds examined. DPD did not decrease the infectivity of HSV upon direct exposure to the virions. The growth of HSV was significantly inhibited when DPD was added to the host cells 1 h prior to infection, thus preventing the adsorption and penetration of the virus into the cells. CONCLUSIONS: Our in vitro data warrant clinical investigation. DPD could have an advantage as a topical application in combination therapy of HSV lesions.


Assuntos
Poliaminas/síntese química , Poliaminas/farmacologia , Simplexvirus/efeitos dos fármacos , Linhagem Celular , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Humanos , Poliaminas/uso terapêutico , Relação Estrutura-Atividade , Internalização do Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA