Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 518(7539): 399-403, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25652823

RESUMO

The strength of synaptic connections fundamentally determines how neurons influence each other's firing. Excitatory connection amplitudes between pairs of cortical neurons vary over two orders of magnitude, comprising only very few strong connections among many weaker ones. Although this highly skewed distribution of connection strengths is observed in diverse cortical areas, its functional significance remains unknown: it is not clear how connection strength relates to neuronal response properties, nor how strong and weak inputs contribute to information processing in local microcircuits. Here we reveal that the strength of connections between layer 2/3 (L2/3) pyramidal neurons in mouse primary visual cortex (V1) obeys a simple rule--the few strong connections occur between neurons with most correlated responses, while only weak connections link neurons with uncorrelated responses. Moreover, we show that strong and reciprocal connections occur between cells with similar spatial receptive field structure. Although weak connections far outnumber strong connections, each neuron receives the majority of its local excitation from a small number of strong inputs provided by the few neurons with similar responses to visual features. By dominating recurrent excitation, these infrequent yet powerful inputs disproportionately contribute to feature preference and selectivity. Therefore, our results show that the apparently complex organization of excitatory connection strength reflects the similarity of neuronal responses, and suggest that rare, strong connections mediate stimulus-specific response amplification in cortical microcircuits.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Sinapses/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Vias Neurais , Estimulação Luminosa , Células Piramidais/citologia , Células Piramidais/fisiologia
2.
Dev Sci ; 13(6): F15-24, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20977551

RESUMO

Non-linear changes in behaviour and in brain activity during adolescent development have been reported in a variety of cognitive tasks. These developmental changes are often interpreted as being a consequence of changes in brain structure, including non-linear changes in grey matter volumes, which occur during adolescence. However, very few studies have attempted to combine behavioural, functional and structural data. This multi-method approach is the one we took in the current study, which was designed to investigate developmental changes in behaviour and brain activity during relational reasoning, the simultaneous integration of multiple relations. We used a relational reasoning task known to recruit rostrolateral prefrontal cortex (RLPFC), a region that undergoes substantial structural changes during adolescence. The task was administered to female participants in a behavioural (N = 178, 7-27 years) and an fMRI study (N = 37, 11-30 years). Non-linear changes in accuracy were observed, with poorer performance during mid-adolescence. fMRI and VBM results revealed a complex picture of linear and possibly non-linear changes with age. Performance and structural changes partly accounted for changes with age in RLPFC and medial superior frontal gyrus activity but not for a decrease in activation in the anterior insula/frontal operculum between mid-adolescence and adulthood. These functional changes might instead reflect the maturation of neurocognitive strategies.


Assuntos
Desenvolvimento do Adolescente/fisiologia , Cognição/fisiologia , Inteligência/fisiologia , Córtex Pré-Frontal/fisiologia , Resolução de Problemas/fisiologia , Adolescente , Adulto , Fatores Etários , Análise de Variância , Mapeamento Encefálico , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética
3.
Elife ; 62017 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-28130922

RESUMO

A general principle of sensory processing is that neurons adapt to sustained stimuli by reducing their response over time. Most of our knowledge on adaptation in single cells is based on experiments in anesthetized animals. How responses adapt in awake animals, when stimuli may be behaviorally relevant or not, remains unclear. Here we show that contrast adaptation in mouse primary visual cortex depends on the behavioral relevance of the stimulus. Cells that adapted to contrast under anesthesia maintained or even increased their activity in awake naïve mice. When engaged in a visually guided task, contrast adaptation re-occurred for stimuli that were irrelevant for solving the task. However, contrast adaptation was reversed when stimuli acquired behavioral relevance. Regulation of cortical adaptation by task demand may allow dynamic control of sensory-evoked signal flow in the neocortex.


Assuntos
Adaptação Fisiológica , Sensibilidades de Contraste , Córtex Visual/fisiologia , Animais , Camundongos , Vigília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA