Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(13): e57, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38850160

RESUMO

A fundamental analysis task for single-cell transcriptomics data is clustering with subsequent visualization of cell clusters. The genes responsible for the clustering are only inferred in a subsequent step. Clustering cells and genes together would be the remit of biclustering algorithms, which are often bogged down by the size of single-cell data. Here we present 'Correspondence Analysis based Biclustering on Networks' (CAbiNet) for joint clustering and visualization of single-cell RNA-sequencing data. CAbiNet performs efficient co-clustering of cells and their respective marker genes and jointly visualizes the biclusters in a non-linear embedding for easy and interactive visual exploration of the data.


Assuntos
Algoritmos , Perfilação da Expressão Gênica , Análise de Célula Única , Software , Transcriptoma , Análise de Célula Única/métodos , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos , Humanos , Análise de Sequência de RNA/métodos
2.
Mol Ther Methods Clin Dev ; 32(1): 101214, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38496303

RESUMO

Inducible nitric oxide synthase (iNOS), regulated by nuclear factor kappa B (NF-κB), is crucial for intestinal inflammation and barrier injury in the progression of necrotizing enterocolitis (NEC). The NF-κB pathway is inhibited by S-glutathionylation of inhibitory κB kinase ß (IKKß), which can be restored by glutaredoxin-1 (Grx1). Thus, we aim to explore the role of Grx1 in experimental NEC. Wild-type (WT) and Grx1-knockout (Grx1-/-) mice were treated with an NEC-inducing regimen. Primary intestinal epithelial cells (IECs) were subjected to LPS treatment. The production of iNOS, NO, and inflammation injuries were assessed. NF-κB and involved signaling pathways were also explored. The severity of NEC was attenuated in Grx1-/- mice. Grx1 ablation promoted IKKß glutathionylation, NF-κB inactivation, and decreased iNOS, NO, and O2·- production in NEC mice. Furthermore, Grx1 ablation restrained proinflammatory cytokines and cell apoptosis, ameliorated intestinal barrier damage, and promoted proliferation in NEC mice. Grx1 ablation protected NEC through iNOS and NO inhibition, which related to S-glutathionylation of IKKß to inhibit NF-κB signaling. Grx1-related signaling pathways provide a new therapeutic target for NEC.

3.
Cancer Res ; 84(5): 659-674, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38190710

RESUMO

Epithelial-mesenchymal transition (EMT) is a fundamental cellular process frequently hijacked by cancer cells to promote tumor progression, especially metastasis. EMT is orchestrated by a complex molecular network acting at different layers of gene regulation. In addition to transcriptional regulation, posttranscriptional mechanisms may also play a role in EMT. Here, we performed a pooled CRISPR screen analyzing the influence of 1,547 RNA-binding proteins on cell motility in colon cancer cells and identified multiple core components of P-bodies (PB) as negative modulators of cancer cell migration. Further experiments demonstrated that PB depletion by silencing DDX6 or EDC4 could activate hallmarks of EMT thereby enhancing cell migration in vitro as well as metastasis formation in vivo. Integrative multiomics analysis revealed that PBs could repress the translation of the EMT driver gene HMGA2, which contributed to PB-meditated regulation of EMT. This mechanism is conserved in other cancer types. Furthermore, endoplasmic reticulum stress was an intrinsic signal that induced PB disassembly and translational derepression of HMGA2. Taken together, this study has identified a function of PBs in the regulation of EMT in cancer. SIGNIFICANCE: Systematic investigation of the influence of posttranscriptional regulation on cancer cell motility established a connection between P-body-mediated translational control and EMT, which could be therapeutically exploited to attenuate metastasis formation.


Assuntos
Neoplasias do Colo , Corpos de Processamento , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Detecção Precoce de Câncer , Fatores de Transcrição/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Linhagem Celular Tumoral , Proteínas/genética
4.
Nat Commun ; 15(1): 7222, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174527

RESUMO

CRISPR/Cas-based transcriptional activators can be enhanced by intrinsically disordered regions (IDRs). However, the underlying mechanisms are still debatable. Here, we examine 12 well-known IDRs by fusing them to the dCas9-VP64 activator, of which only seven can augment activation, albeit independently of their phase separation capabilities. Moreover, modular domains (MDs), another class of multivalent molecules, though ineffective in enhancing dCas9-VP64 activity on their own, show substantial enhancement in transcriptional activation when combined with dCas9-VP64-IDR. By varying the number of gRNA binding sites and fusing dCas9-VP64 with different IDRs/MDs, we uncover that optimal, rather than maximal, cis-trans cooperativity enables the most robust activation. Finally, targeting promoter-enhancer pairs yields synergistic effects, which can be further amplified via enhancing chromatin interactions. Overall, our study develops a versatile platform for efficient gene activation and sheds important insights into CRIPSR-based transcriptional activators enhanced with multivalent molecules.


Assuntos
Sistemas CRISPR-Cas , Ativação Transcricional , Humanos , Regiões Promotoras Genéticas , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Células HEK293 , Sítios de Ligação , Cromatina/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Elementos Facilitadores Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA