Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 127: 483-494, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522079

RESUMO

Volatile organic compounds (VOCs) are important precursors of secondary organic compounds and ozone, which raise major environmental concerns. To investigate the VOC emission characteristics, measurements of VOCs based on proton transfer reaction-mass spectrometry during 2017 were conducted in a coastal industrial area in Ningbo, Zhejiang Province, China. Based on seasonal variation in species concentration, the positive matrix factorization (PMF) receptor model was applied to apportion the sources of VOCs in each season. The PMF results revealed that unknown acetonitrile source, paint solvent, electronics industry, biomass burning, secondary formation and biogenic emission were mainly attributed to VOC pollution. Biomass burning and secondary formation were the major sources of VOCs and contributed more than 70% of VOC emissions in spring and autumn. Industry-related sources contributed 8.65%-31.2% of the VOCs throughout the year. The unknown acetonitrile source occurred in winter and spring, and contributed 7.6%-43.73% of the VOC emissions in the two seasons. Conditional probability function (CPF) analysis illustrated that the industry sources came from local emission, while biomass burning and biogenic emission mainly came from the northwest direction. The potential source contribution function (PSCF) model showed that secondary formation-related source was mainly from Jiangsu Province, northeastern China and the surrounding ocean. The potential source areas of unknown acetonitrile source were northern Zhejiang Province, southern Jiangsu Province and the northeastern coastal marine environments.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Rios , Ozônio/análise , China , Acetonitrilas
2.
Environ Sci Pollut Res Int ; 29(58): 86899-86912, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36261637

RESUMO

With the emergence of environmental issues regarding persistent organic pollutants (POPs), fugacity models have been widely used in the concentration prediction and exposure assessment of POPs. Based on 778 relevant research articles published between 1979 and 2020 in the Web of Science Core Collection (WOSCC), the current research progress of the fugacity model on predicting the fate and transportation of POPs in the environment was analyzed by CiteSpace software. The results showed that the research subject has low interdisciplinarity, mainly involving environmental science and environmental engineering. The USA was the most paper-published country, followed by Canada and China. The publications of the Chinese Academy of Sciences, Lancaster University, and Environment Canada were leading. Collaboration between institutions was inactive and low intensity. Keyword co-occurrence analysis showed that polychlorinated biphenyls, organochlorine pesticides, and polycyclic aromatic hydrocarbons were the most concerning compounds, while air, water, soil, and sediment were the most concerning environmental media. Through co-citation cluster analysis, in addition to the in-depth exploration of traditional POPs, research on emerging POPs such as cyclic volatile methyl siloxane and dechlorane plus were new research frontiers. The distribution and transfer of POPs in the soil-air environment have attracted the most attention, and the regional grid model based on fugacity has been gradually improved and developed. The co-citation high-burst detection showed that the research hotspots gradually shifted from pollutant persistence and long-range transport potential to pollutant distribution rules among the different environmental media and the long-distance transmission simulation.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Poluentes Ambientais/análise , Bibliometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA