Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Nature ; 621(7977): 100-104, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37495699

RESUMO

Earth's mantle has a two-layered structure, with the upper and lower mantle domains separated by a seismic discontinuity at about 660 km (refs. 1,2). The extent of mass transfer between these mantle domains throughout Earth's history is, however, poorly understood. Continental crust extraction results in Ti-stable isotopic fractionation, producing isotopically light melting residues3-7. Mantle recycling of these components can impart Ti isotope variability that is trackable in deep time. We report ultrahigh-precision 49Ti/47Ti ratios for chondrites, ancient terrestrial mantle-derived lavas ranging from 3.8 to 2.0 billion years ago (Ga) and modern ocean island basalts (OIBs). Our new Ti bulk silicate Earth (BSE) estimate based on chondrites is 0.052 ± 0.006‰ heavier than the modern upper mantle sampled by normal mid-ocean ridge basalts (N-MORBs). The 49Ti/47Ti ratio of Earth's upper mantle was chondritic before 3.5 Ga and evolved to a N-MORB-like composition between approximately 3.5 and 2.7 Ga, establishing that more continental crust was extracted during this epoch. The +0.052 ± 0.006‰ offset between BSE and N-MORBs requires that <30% of Earth's mantle equilibrated with recycled crustal material, implying limited mass exchange between the upper and lower mantle and, therefore, preservation of a primordial lower-mantle reservoir for most of Earth's geologic history. Modern OIBs record variable 49Ti/47Ti ratios ranging from chondritic to N-MORBs compositions, indicating continuing disruption of Earth's primordial mantle. Thus, modern-style plate tectonics with high mass transfer between the upper and lower mantle only represents a recent feature of Earth's history.

2.
Proc Natl Acad Sci U S A ; 120(9): e2217125120, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802438

RESUMO

Sodium chloride is expected to be found on many of the surfaces of icy moons like Europa and Ganymede. However, spectral identification remains elusive as the known NaCl-bearing phases cannot match current observations, which require higher number of water of hydration. Working at relevant conditions for icy worlds, we report the characterization of three "hyperhydrated" sodium chloride (SC) hydrates, and refined two crystal structures [2NaCl·17H2O (SC8.5); NaCl·13H2O (SC13)]. We found that the dissociation of Na+ and Cl- ions within these crystal lattices allows for the high incorporation of water molecules and thus explain their hyperhydration. This finding suggests that a great diversity of hyperhydrated crystalline phases of common salts might be found at similar conditions. Thermodynamic constraints indicate that SC8.5 is stable at room pressure below 235 K, and it could be the most abundant NaCl hydrate on icy moon surfaces like Europa, Titan, Ganymede, Callisto, Enceladus, or Ceres. The finding of these hyperhydrated structures represents a major update to the H2O-NaCl phase diagram. These hyperhydrated structures provide an explanation for the mismatch between the remote observations of the surface of Europa and Ganymede and previously available data on NaCl solids. It also underlines the urgent need for mineralogical exploration and spectral data on hyperhydrates at relevant conditions to help future icy world exploration by space missions.

3.
Mol Cell Biochem ; 479(3): 653-664, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37155089

RESUMO

Pleckstrin homeolike domain, family A, member 1 (PHLDA1) is a multifunctional protein that plays diverse roles in A variety of biological processes, including cell death, and hence its altered expression has been found in different types of cancer. Although studies have shown a regulatory relationship between p53 and PHLDA1, the molecular mechanism is still unclear. Especially, the role of PHLDA1 in the process of apoptosis is still controversial. In this study, we found that the expression of PHLDA1 in human cervical cancer cell lines was correlated with the up-expression of p53 after treatment with apoptosis-inducing factors. Subsequently, the binding site and the binding effect of p53 on the promoter region of PHLDA1 were verified by our bioinformatics data analysis and luciferase reporter assay. Indeed, we used CRISPR-Cas9 to knockout the p53 gene in HeLa cells and further confirmed that p53 can bind to the promoter region of PHLDA1 gene, and then directly regulate the expression of PHLDA1 by recruiting P300 and CBP to change the acetylation and methylation levels in the promoter region. Finally, a series of gain-of-function experiments further confirmed that p53 re-expression in HeLap53-/- cell can up-regulate the reduction of PHLDA1 caused by p53 knockout, and affect cell apoptosis and proliferation. Our study is the first to explore the regulatory mechanism of p53 on PHLDA1 by using the p53 gene knockout cell model, which further proves that PHLDA1 is a target-gene in p53-mediated apoptosis, and reveals the important role of PHLDA1 in cell fate determination.


Assuntos
Fatores de Transcrição , Proteína Supressora de Tumor p53 , Humanos , Apoptose , Células HeLa , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética
4.
Curr Issues Mol Biol ; 45(11): 8633-8651, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37998720

RESUMO

Mitochondrial dysfunction is known to play a critical role in the development of cardiomyocyte death during acute myocardial infarction (AMI). However, the exact mechanisms underlying this dysfunction are still under investigation. Adenine nucleotide translocase 2 (ANT2) is a key functional protein in mitochondria. We aimed at exploring the potential benefits of ANT2 inhibition against AMI. We utilized an oxygen-glucose deprivation (OGD) cell model and an AMI mice model to detect cardiomyocyte injury. We observed elevated levels of reactive oxygen species (ROS), disrupted mitochondrial membrane potential (MMP), and increased apoptosis due to the overexpression of ANT2. Additionally, we discovered that ANT2 is involved in myocardial apoptosis by activating the mTOR (mechanistic target of rapamycin kinase)-dependent PGC-1α (PPARG coactivator 1 alpha) pathway, establishing a novel feedback loop during AMI. In our experiments with AC16 cells under OGD conditions, we observed protective effects when transfected with ANT2 siRNA and miR-1203. Importantly, the overexpression of ANT2 counteracted the protective effect resulting from miR-1203 upregulation in OGD-induced AC16 cells. All these results supported that the inhibition of ANT2 could alleviate myocardial cell injury under OGD conditions. Based on these findings, we propose that RNA interference (RNAi) technology, specifically miRNA and siRNA, holds therapeutic potential by activating the ANT2/mTOR/PGC-1α feedback loop. This activation could help mitigate mitochondria-mediated injury in the context of AMI. These insights may contribute to the development of future clinical strategies for AMI.

5.
Proc Natl Acad Sci U S A ; 117(45): 27893-27898, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106398

RESUMO

The bulk silicate Earth (BSE), and all its sampleable reservoirs, have a subchondritic niobium-to-tantalum ratio (Nb/Ta). Because both elements are refractory, and Nb/Ta is fairly constant across chondrite groups, this can only be explained by a preferential sequestration of Nb relative to Ta in a hidden (unsampled) reservoir. Experiments have shown that Nb becomes more siderophile than Ta under very reducing conditions, leading the way for the accepted hypothesis that Earth's core could have stripped sufficient amounts of Nb during its formation to account for the subchondritic signature of the BSE. Consequently, this suggestion has been used as an argument that Earth accreted and differentiated, for most of its history, under very reducing conditions. Here, we present a series of metal-silicate partitioning experiments of Nb and Ta in a laser-heated diamond anvil cell, at pressure and temperature conditions directly comparable to those of core formation; we find that Nb is more siderophile than Ta under any conditions relevant to a deep magma ocean, confirming that BSE's missing Nb is in the core. However, multistage core formation modeling only allows for moderately reducing or oxidizing accretionary conditions, ruling out the need for very reducing conditions, which lead to an overdepletion of Nb from the mantle (and a low Nb/Ta ratio) that is incompatible with geochemical observations. Earth's primordial magma ocean cannot have contained less than 2% or more than 18% FeO since the onset of core formation.

6.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37373188

RESUMO

BACKGROUND: High expression of inhibitor of DNA binding 1 (ID1) correlates with poor prognosis in colorectal cancer (CRC). Aberrant enhancer activation in regulating ID1 transcription is limited. METHODS: Immunohistochemistry (IHC), quantitative RT-PCR (RT-qPCR) and Western blotting (WB) were used to determine the expression of ID1. CRISPR-Cas9 was used to generate ID1 or enhancer E1 knockout cell lines. Dual-luciferase reporter assay, chromosome conformation capture assay and ChIP-qPCR were used to determine the active enhancers of ID1. Cell Counting Kit 8, colony-forming, transwell assays and tumorigenicity in nude mice were used to investigate the biological functions of ID1 and enhancer E1. RESULTS: Human CRC tissues and cell lines expressed a higher level of ID1 than normal controls. ID1 promoted CRC cell proliferation and colony formation. Enhancer E1 actively regulated ID1 promoter activity. Signal transducer and activator of transcription 3 (STAT3) bound to ID1 promoter and enhancer E1 to regulate their activity. The inhibitor of STAT3 Stattic attenuated ID1 promoter and enhancer E1 activity and the expression of ID1. Enhancer E1 knockout down-regulated ID1 expression level and cell proliferation in vitro and in vivo. CONCLUSIONS: Enhancer E1 is positively regulated by STAT3 and contributes to the regulation of ID1 to promote CRC cell progression and might be a potential target for anti-CRC drug studies.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Animais , Camundongos , Humanos , Fator de Transcrição STAT3/metabolismo , Camundongos Nus , Sequências Reguladoras de Ácido Nucleico , Proliferação de Células , Neoplasias do Colo/genética , DNA , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Movimento Celular , Proteína 1 Inibidora de Diferenciação/genética , Proteína 1 Inibidora de Diferenciação/metabolismo
7.
Korean J Physiol Pharmacol ; 27(6): 521-531, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884284

RESUMO

Transmembrane protein TMEM16A, which encodes calcium-activated chloride channel has been implicated in tumorigenesis. Overexpression of TMEM16A is associated with poor prognosis and low overall survival in multiple cancers including lung adenocarcinoma, making it a promising biomarker and therapeutic target. In this study, three structure-related sesquiterpene lactones (mecheliolide, costunolide and dehydrocostus lactone) were extracted from the traditional Chinese medicine Aucklandiae Radix and identified as novel TMEM16A inhibitors with comparable inhibitory effects. Their effects on the proliferation and migration of lung adenocarcinoma cells were examined. Whole-cell patch clamp experiments showed that these sesquiterpene lactones potently inhibited recombinant TMEM16A currents in a concentration-dependent manner. The half-maximal concentration (IC50) values for three tested sesquiterpene lactones were 29.9 ± 1.1 µM, 19.7 ± 0.4 µM, and 24.5 ± 2.1 µM, while the maximal effect (Emax) values were 100.0% ± 2.8%, 85.8% ± 0.9%, and 88.3% ± 4.6%, respectively. These sesquiterpene lactones also significantly inhibited the endogenous TMEM16A currents and proliferation, and migration of LA795 lung cancer cells. These results demonstrate that mecheliolide, costunolide and dehydrocostus lactone are novel TMEM16A inhibitors and potential candidates for lung adenocarcinoma therapy.

8.
J Physiol ; 599(7): 2103-2123, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33569781

RESUMO

KEY POINTS: Rat somatosensory neurons express a junctional protein, junctophilin-4 (JPH4) JPH4 is necessary for the formation of store operated Ca2+ entry (SOCE) complex at the junctions between plasma membrane and endoplasmic reticulum in these neurons. Knockdown of JPH4 impairs endoplasmic reticulum Ca2+ store refill and junctional Ca2+ signalling in sensory neurons. In vivo knockdown of JPH4 in the dorsal root ganglion (DRG) sensory neurons significantly attenuated experimentally induced inflammatory pain in rats. Junctional nanodomain Ca2+ signalling maintained by JPH4 is an important contributor to the inflammatory pain mechanisms. ABSTRACT: Junctions of endoplasmic reticulum and plasma membrane (ER-PM junctions) form signalling nanodomains in eukaryotic cells. ER-PM junctions are present in peripheral sensory neurons and are important for the fidelity of G protein coupled receptor (GPCR) signalling. Yet little is known about the assembly, maintenance and physiological role of these junctions in somatosensory transduction. Using fluorescence imaging, proximity ligation, super-resolution microscopy, in vitro and in vivo gene knockdown we demonstrate that a member of the junctophilin protein family, junctophilin-4 (JPH4), is necessary for the formation of store operated Ca2+ entry (SOCE) complex at the ER-PM junctions in rat somatosensory neurons. Thus we show that JPH4 localises to the ER-PM junctional areas and co-clusters with SOCE proteins STIM1 and Orai1 upon ER Ca2+ store depletion. Knockdown of JPH4 impairs SOCE and ER Ca2+ store refill in sensory neurons. Furthermore, we demonstrate a key role of the JPH4 and junctional nanodomain Ca2+ signalling in the pain-like response induced by the inflammatory mediator bradykinin. Indeed, an in vivo knockdown of JPH4 in the dorsal root ganglion (DRG) sensory neurons significantly shortened the duration of nocifensive behaviour induced by hindpaw injection of bradykinin in rats. Since the ER supplies Ca2+ for the excitatory action of multiple inflammatory mediators, we suggest that junctional nanodomain Ca2+ signalling maintained by JPH4 is an important contributor to the inflammatory pain mechanisms.


Assuntos
Sinalização do Cálcio , Cálcio , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana , Proteína ORAI1 , Ratos , Células Receptoras Sensoriais/metabolismo , Molécula 1 de Interação Estromal/metabolismo
9.
J Biol Chem ; 295(18): 6177-6186, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32188693

RESUMO

T-type (Cav3) Ca2+ channels are important regulators of excitability and rhythmic activity of excitable cells. Among other voltage-gated Ca2+ channels, Cav3 channels are uniquely sensitive to oxidation and zinc. Using recombinant protein expression in HEK293 cells, patch clamp electrophysiology, site-directed mutagenesis, and homology modeling, we report here that modulation of Cav3.2 by redox agents and zinc is mediated by a unique extracellular module containing a high-affinity metal-binding site formed by the extracellular IS1-IS2 and IS3-IS4 loops of domain I and a cluster of extracellular cysteines in the IS1-IS2 loop. Patch clamp recording of recombinant Cav3.2 currents revealed that two cysteine-modifying agents, sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES) and N-ethylmaleimide, as well as a reactive oxygen species-producing neuropeptide, substance P (SP), inhibit Cav3.2 current to similar degrees and that this inhibition is reversed by a reducing agent and a zinc chelator. Pre-application of MTSES prevented further SP-mediated current inhibition. Substitution of the zinc-binding residue His191 in Cav3.2 reduced the channel's sensitivity to MTSES, and introduction of the corresponding histidine into Cav3.1 sensitized it to MTSES. Removal of extracellular cysteines from the IS1-IS2 loop of Cav3.2 reduced its sensitivity to MTSES and SP. We hypothesize that oxidative modification of IS1-IS2 loop cysteines induces allosteric changes in the zinc-binding site of Cav3.2 so that it becomes sensitive to ambient zinc.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Espaço Extracelular/metabolismo , Canais de Cálcio Tipo T/química , Células HEK293 , Humanos , Modelos Moleculares , Oxirredução , Conformação Proteica
10.
Proc Natl Acad Sci U S A ; 114(31): E6410-E6419, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716904

RESUMO

M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epilepsy. However, physiological mechanisms resulting in M channel potentiation are rare. Here we report that intracellular free zinc directly and reversibly augments the activity of recombinant and native M channels. This effect is mechanistically distinct from the known redox-dependent KCNQ channel potentiation. Interestingly, the effect of zinc cannot be attributed to a single histidine- or cysteine-containing zinc-binding site within KCNQ channels. Instead, zinc dramatically reduces KCNQ channel dependence on its obligatory physiological activator, phosphatidylinositol 4,5-bisphosphate (PIP2). We hypothesize that zinc facilitates interactions of the lipid-facing interface of a KCNQ protein with the inner leaflet of the plasma membrane in a way similar to that promoted by PIP2 Because zinc is increasingly recognized as a ubiquitous intracellular second messenger, this discovery might represent a hitherto unknown native pathway of M channel modulation and provide a fresh strategy for the design of M channel activators for therapeutic purposes.


Assuntos
Gânglios Espinais/metabolismo , Ativação do Canal Iônico/fisiologia , Canais de Potássio KCNQ/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Zinco/metabolismo , Animais , Sítios de Ligação/fisiologia , Células CHO , Linhagem Celular , Membrana Celular/metabolismo , Cricetulus , Células HEK293 , Humanos , Canais de Potássio KCNQ/genética , Neurônios/metabolismo , Oxirredução , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia
11.
Am J Physiol Cell Physiol ; 317(3): C466-C480, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31242393

RESUMO

The swelling-activated chloride current (ICl,swell) is induced when a cell swells and plays a central role in maintaining cell volume in response to osmotic stress. The major contributor of ICl,swell is the volume-regulated anion channel (VRAC). Leucine-rich repeat containing 8A (LRRC8A; SWELL1) was recently identified as an essential component of VRAC, but the mechanisms of VRAC activation are still largely unknown; moreover, other Cl- channels, such as anoctamin 1 (ANO1), were also suggested to contribute to ICl,swell. In this present study, we investigated the roles of LRRC8A and ANO1 in activation of ICl,swell; we also explored the role of intracellular Ca2+ in ICl,swell activation. We used a CRISPR/Cas9 gene editing approach, electrophysiology, live fluorescent imaging, selective pharmacology, and other approaches to show that both LRRC8A and ANO1 can be activated by cell swelling in HEK293 cells. Yet, both channels contribute biophysically and pharmacologically distinct components to ICl,swell, with LRRC8A being the major component. Cell swelling induced oscillatory Ca2+ transients, and these Ca2+ signals were required to activate both the LRRC8A- and ANO1-dependent components of ICl,swell. Both ICl,swell components required localized rather than global Ca2+ for activation. Interestingly, while intracellular Ca2+ was necessary and sufficient to activate ANO1, it was necessary but not sufficient to activate LRRC8A-mediated currents. Finally, Ca2+ transients linked to the ICl,swell activation were mediated by the G protein-coupled receptor-independent PLC isoforms.


Assuntos
Sinalização do Cálcio/fisiologia , Tamanho Celular , Canais de Cloreto/fisiologia , Animais , Anoctamina-1/antagonistas & inibidores , Anoctamina-1/fisiologia , Células CHO , Sinalização do Cálcio/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Canais de Cloreto/antagonistas & inibidores , Cricetinae , Cricetulus , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/fisiologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/fisiologia , Ácido Niflúmico/farmacologia , Tapsigargina/farmacologia
12.
Clin Sci (Lond) ; 133(13): 1457-1473, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31253658

RESUMO

Long non-coding RNAs (lncRNAs) play important roles in tumorigenesis and cancer progression. The orphan nuclear receptor subfamily 4 group A member 1 (NR4A1) acts as an oncogene, and is involved in colorectal cancer (CRC) development. However, the mechanism through which lncRNA regulates NR4A1 expression remains unknown. We aimed to identify lncRNAs that regulate NR4A1 and assess their underlying mechanisms in CRC. We first identified an antisense lncRNA of NR4A1 that was up-regulated in CRC tissues and cells with rapid amplification of cDNA ends (RACE), and designated it as NR4A1AS. Spearman correlation analysis showed that NR4A1AS was positively correlated with NR4A1 mRNA levels in 37 CRC tissues. Mechanistically, NR4A1AS stabilized NR4A1 mRNA by forming RNA-RNA complexes via partial base-pairing and up-regulated NR4A1 expression in CRC cells. RNA immunoprecipitation (RIP) assays revealed that knockdown of NR4A1AS expression by siRNA enhanced up-frameshift 1 (UPF1) recruitment to NR4A1 mRNA, thereby decreasing NR4A1 mRNA stability. Moreover, depletion of NR4A1AS was found to mimic the effect of NR4A1 knockdown, specifically by suppressing cell proliferation, migration and invasion, and inducing apoptosis and cell cycle arrest. Accordingly, restoring NR4A1 expression ameliorated the effects of NR4A1AS knockdown on tumor growth and metastasis of CRC cells in vitro and in vivo Thus, we conclude that NR4A1AS up-regulates NR4A1 expression by forming RNA-RNA complexes and blocking UPF1-mediated mRNA destabilization, and it functions in tumor growth and metastasis of CRC cells at least partly through regulating NR4A1, suggesting that NR4A1AS might be as a potential target for RNA-based anti-CRC drug studies.


Assuntos
Neoplasias Colorretais/enzimologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , RNA Helicases/metabolismo , Estabilidade de RNA , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Animais , Apoptose , Células CACO-2 , Pontos de Checagem do Ciclo Celular , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , RNA Helicases/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Transdução de Sinais , Transativadores/genética , Carga Tumoral , Regulação para Cima
13.
Biochem Biophys Res Commun ; 473(2): 396-402, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26944020

RESUMO

T-type Ca(2+) channels are important regulators of peripheral sensory neuron excitability. Accordingly, T-type Ca(2+) currents are often increased in various pathological pain conditions, such as inflammation or nerve injury. Here we investigated effects of inflammation on functional expression of T-type Ca(2+) channels in small-diameter cultured dorsal root ganglion (DRG) neurons. We found that overnight treatment of DRG cultures with a cocktail of inflammatory mediators bradykinin (BK), adenosine triphosphate (ATP), norepinephrine (NE) and prostaglandin E2 (PGE2) strongly increased the population size of the small-diameter neurons displaying low-voltage activated (LVA, T-type) Ca(2+) currents while having no effect on the peak LVA current amplitude. When applied individually, BK and ATP also increased the population size of LVA-positive neurons while NE and PGE2 had no effect. The PLC inhibitor U-73122 and B2 receptor antagonist, Hoe-140, both abolished the increase of the population of LVA-positive DRG neurons. Inflammatory treatment did not affect CaV3.2 mRNA or protein levels in DRG cultures. Furthermore, an ubiquitination inhibitor, MG132, did not increase the population of LVA-positive neurons. Our data suggest that inflammatory mediators BK and ATP increase the abundance of LVA-positive DRG neurons in total neuronal population by stimulating the recruitment of a 'reserve pool' of CaV3.2 channels, particularly in neurons that do not display measurable LVA currents under control conditions.


Assuntos
Bradicinina/imunologia , Canais de Cálcio Tipo T/imunologia , Gânglios Espinais/citologia , Células Receptoras Sensoriais/imunologia , Trifosfato de Adenosina/imunologia , Animais , Canais de Cálcio Tipo T/análise , Células Cultivadas , Dinoprostona/imunologia , Gânglios Espinais/imunologia , Inflamação/imunologia , Norepinefrina/imunologia , Ratos Sprague-Dawley , Células Receptoras Sensoriais/citologia
14.
Hematol Oncol ; 34(1): 36-41, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25312095

RESUMO

Burkitt's lymphoma (BL) is a malignancy of B lymphocytes. The rapid growth rate and frequent systemic spread result in most patients presenting with advanced disease at diagnosis. Cerebrospinal fluid cytology is the gold standard (with very high accuracy) for diagnosing BL central nervous system (CNS) metastasis; however, the low sensitivity of this method limits its clinical applications. Here, we report a case of BL with CNS metastasis. The levels of vascular endothelial growth factor (VEGF)-A and VEGF-C in the serum and cerebrospinal fluid were used to evaluate the status of BL remission and recurrence. Comparisons were made between VEGF and the other risk factors used in evaluating CNS metastasis. Although not in strict accordance, VEGF levels mirrored the disease course. Therefore, VEGF may reflect the status of BL CNS metastasis. Understanding the role of VEGF in CNS metastasis may help to improve the staging and risk classification of BL as well as the investigation of targeted therapy.


Assuntos
Encéfalo/patologia , Linfoma de Burkitt/patologia , Invasividade Neoplásica/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/líquido cefalorraquidiano , Linfoma de Burkitt/sangue , Linfoma de Burkitt/líquido cefalorraquidiano , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/epidemiologia , Líquido Cefalorraquidiano/citologia , Diplopia/etiologia , Feminino , Cefaleia/etiologia , Humanos , Imunofenotipagem , Linfonodos/patologia , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neovascularização Patológica/sangue , Neovascularização Patológica/líquido cefalorraquidiano , Recidiva , Fatores de Risco , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/líquido cefalorraquidiano , Fator C de Crescimento do Endotélio Vascular/sangue , Fator C de Crescimento do Endotélio Vascular/líquido cefalorraquidiano
15.
Clin Exp Pharmacol Physiol ; 43(1): 67-74, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26444418

RESUMO

The objective of this study was to determine the role of cyclooxygenase (COX)-1 or -2 in endothelium-dependent contraction under atherosclerotic conditions. Atherosclerosis was induced in apoE knockout (apoE(-/-)) mice and those with COX-1(-/-) (apoE(-/-)-COX-1(-/-)) by feeding with high fat and cholesterol food. Aortas (abdominal or the whole section) were isolated for functional and/or biochemical analyses. As in non-atherosclerotic conditions, the muscarinic receptor agonist acetylcholine (ACh) evoked an endothelium-dependent, COX-mediated contraction following NO synthase (NOS) inhibition in abdominal aortic rings from atherosclerotic apoE(-/-) mice. Interestingly, COX-1 inhibition not only abolished such a contraction in rings showing normal appearance, but also diminished that in rings with plaques. Accordingly, only a minor contraction (<30% that of apoE(-/-) counterparts) was evoked by ACh (following NOS inhibition) in abdominal aortic rings of atherosclerotic apoE(-/-)-COX-1(-/-) mice with plaques, and none was evoked in those showing normal appearance. Also, the contraction evoked by ACh in apoE(-/-)-COX-1(-/-) abdominal aortic rings with plaques was abolished by non-selective COX inhibition, thromboxane-prostanoid (TP) receptor antagonism, or endothelial denudation. Moreover, it was noted that ACh evoked a predominant production of the prostacyclin (PGI2, which mediates abdominal aortic contraction via TP receptors in mice) metabolite 6-keto-PGF1α, which was again sensitive to COX-1 inhibition or COX-1(-/-). Therefore, in atherosclerotic mouse abdominal aortas, COX-1 can still be the major isoform mediating endothelium-dependent contraction, which probably results largely from PGI2 synthesis as in non-atherosclerotic conditions. In contrast, COX-2 may have only a minor role in such response limited to areas of plaques under the same pathological condition.


Assuntos
Aorta Abdominal/fisiopatologia , Aterosclerose/fisiopatologia , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Endotélio Vascular/metabolismo , Vasoconstrição , Acetilcolina/farmacologia , Animais , Aorta Abdominal/efeitos dos fármacos , Aorta Abdominal/metabolismo , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Ciclo-Oxigenase 1/deficiência , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase/farmacologia , Dinoprostona/biossíntese , Endotélio Vascular/efeitos dos fármacos , Epoprostenol/biossíntese , Epoprostenol/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Agonistas Muscarínicos/farmacologia , Óxido Nítrico/metabolismo , Receptores Muscarínicos/metabolismo , Vasoconstrição/efeitos dos fármacos
16.
Proteomics ; 15(17): 3075-86, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25950996

RESUMO

For years, many studies have been conducted to investigate the intracellular response of cells challenged with toxic metal(s), yet, the corresponding secretome responses, especially in human lung cells, are largely unexplored. Here, we provide a secretome analysis of human bronchial epithelial cells (BEAS-2B) treated with cadmium chloride (CdCl2 ), with the aim of identifying secreted proteins in response to Cd toxicity. Proteins from control and spent media were separated by two-dimensional electrophoresis and visualized by silver staining. Differentially-secreted proteins were identified by MALDI-TOF-MS analysis and database searching. We characterized, for the first time, the extracellular proteome changes of BEAS-2B dosed with Cd. Our results unveiled that Cd treatment led to the marked upregulation of molecular chaperones, antioxidant enzymes, enzymes associated with glutathione metabolic process, proteins involved in cellular energy metabolism, as well as tumor-suppressors. Pretreatment of cells with the thiol antioxidant glutathione before Cd treatment effectively abrogated the secretion of these proteins and prevented cell death. Taken together, our results demonstrate that Cd causes oxidative stress-induced cytotoxicity; and the differentially-secreted protein signatures could be considered as targets for potential use as extracellular biomarkers upon Cd exposure.


Assuntos
Brônquios/citologia , Cloreto de Cádmio/toxicidade , Proteínas/metabolismo , Antioxidantes/farmacologia , Brônquios/efeitos dos fármacos , Cloreto de Cádmio/administração & dosagem , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/metabolismo , Meios de Cultura/análise , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Glutationa/metabolismo , Glutationa/farmacologia , Humanos , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxinas/metabolismo , Proteínas/análise , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Pflugers Arch ; 467(7): 1417-1430, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25078708

RESUMO

The Ca(2+) activated Cl(-) channels (CaCCs) play a multitude of important physiological functions. A number of candidate proteins have been proposed to form CaCC, but only two families, the bestrophins and the TMEM16 proteins, recapitulate the properties of native CaCC in expression systems. Studies of endogenous CaCCs are hindered by the lack of specific pharmacology as most Cl(-) channel modulators lack selectivity and a systematic comparison of the effects of these modulators on TMEM16A and bestrophin is missing. In the present study, we studied seven Cl(-) channel inhibitors: niflumic acid (NFA), NPPB, flufenamic acid (FFA), DIDS, tannic acid, CaCCinh-A01 and T16Ainh-A01 for their effects on TMEM16A and bestrophin-1 (Best1) stably expressed in CHO (Chinese hamster ovary) cells using patch clamp technique. Among seven inhibitors studied, NFA showed highest selectivity for TMEM16A (IC50 of 7.40 ± 0.95 µM) over Best1 (IC50 of 102.19 ± 15.05 µM). In contrast, DIDS displayed a reverse selectivity inhibiting Best1 with IC50 of 3.93 ± 0.73 µM and TMEM16A with IC50 of 548.86 ± 25.57 µM. CaCCinh-A01 was the most efficacious blocker for both TMEM16A and Best1 channels. T16Ainh-A01 partially inhibited TMEM16A currents but had no effect on Best1 currents. Tannic acid, NPPB and FFA had variable intermediate effects. Potentiation of channel activity by some of these modulators and the effects on TMEM16A deactivation kinetics were also described. Characterization of Cl(-) channel modulators for their effects on TMEM16A and Best1 will facilitate future studies of native CaCCs.


Assuntos
Canais de Cloreto/metabolismo , Proteínas do Olho/metabolismo , Moduladores de Transporte de Membrana/farmacologia , Proteínas de Neoplasias/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Animais , Anoctamina-1 , Bestrofinas , Células CHO , Canais de Cloreto/antagonistas & inibidores , Cricetinae , Cricetulus , Proteínas do Olho/antagonistas & inibidores , Ácido Flufenâmico/farmacologia , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Ácido Niflúmico/farmacologia , Nitrobenzoatos/farmacologia , Taninos/farmacologia
18.
Biochem Biophys Res Commun ; 465(2): 188-93, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26239659

RESUMO

Growing evidence suggests that mammalian peripheral somatosensory neurons express functional receptors for gamma-aminobutyric acid, GABAA and GABAB. Moreover, local release of GABA by pain-sensing (nociceptive) nerve fibres has also been suggested. Yet, the functional significance of GABA receptor triggering in nociceptive neurons is not fully understood. Here we used patch-clamp recordings from small-diameter cultured DRG neurons to investigate effects of GABAB receptor agonist baclofen on voltage-gated Ca(2+) currents. We found that baclofen inhibited both low-voltage activated (LVA, T-type) and high-voltage activated (HVA) Ca(2+) currents in a proportion of DRG neurons by 22% and 32% respectively; both effects were sensitive to Gi/o inhibitor pertussis toxin. Inhibitory effect of baclofen on both current types was about twice less efficacious as compared to that of the µ-opioid receptor agonist DAMGO. Surprisingly, only HVA but not LVA current modulation by baclofen was partially prevented by G protein inhibitor GDP-ß-S. In contrast, only LVA but not HVA current modulation was reversed by the application of a reducing agent dithiothreitol (DTT). Inhibition of T-type Ca(2+) current by baclofen and the recovery of such inhibition by DTT were successfully reconstituted in the expression system. Our data suggest that inhibition of LVA current in DRG neurons by baclofen is partially mediated by an unconventional signaling pathway that involves a redox mechanism. These findings reinforce the idea of targeting peripheral GABA receptors for pain relief.


Assuntos
Baclofeno/farmacologia , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo N/metabolismo , Canais de Cálcio Tipo T/metabolismo , Agonistas dos Receptores de GABA-B/farmacologia , Receptores de GABA-B/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Animais , Ditiotreitol/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Gânglios Espinais , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/farmacologia , Células HEK293 , Humanos , Nociceptividade/fisiologia , Dor/metabolismo , Dor/fisiopatologia , Técnicas de Patch-Clamp , Toxina Pertussis/farmacologia , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Tionucleotídeos/farmacologia , Ácido gama-Aminobutírico/metabolismo
19.
Clin Sci (Lond) ; 129(12): 1151-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26396259

RESUMO

Hypercholesterolaemia and inflammation are correlated with atherogenesis. Orphan nuclear receptor NR4A1, as a key regulator of inflammation, is closely associated with lipid levels in vivo. However, the mechanism by which lipids regulate NR4A1 expression remains unknown. We aimed to elucidate the underlying mechanism of NR4A1 expression in monocytes during hypercholesterolaemia, and reveal the potential role of NR4A1 in hypercholesterolaemia-induced circulating inflammation. Circulating leucocytes were collected from blood samples of 139 patients with hypercholesterolaemia and 139 sex- and age-matched healthy subjects. We found that there was a low-grade inflammatory state and higher expression of NR4A1 in patients. Both total cholesterol and low-density lipoprotein cholesterol levels in plasma were positively correlated with NR4A1 mRNA level. ChIP revealed that acetylation of histone H3 was enriched in the NR4A1 promoter region in patients. Human mononuclear cell lines THP-1 and U937 were treated with cholesterol. Supporting our clinical observations, cholesterol enhanced p300 acetyltransferase and decreased HDAC7 (histone deacetylase 7) recruitment to the NR4A1 promoter region, resulting in histone H3 hyperacetylation and further contributing to NR4A1 up-regulation in monocytes. Moreover, cytosporone B, an NR4A1 agonist, completely reversed cholesterol-induced IL-6 (interleukin 6) and MCP-1 (monocyte chemoattractant protein 1) expression to below basal levels, and knockdown of NR4A1 expression by siRNA not only mimicked, but also exaggerated the effects of cholesterol on inflammatory biomarker up-regulation. Thus we conclude that histone acetylation contributes to the regulation of NR4A1 expression in hypercholesterolaemia, and that NR4A1 expression reduces hypercholesterolaemia-induced inflammation.


Assuntos
Histonas/metabolismo , Hipercolesterolemia/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Monócitos/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Acetilação , Adulto , Idoso , Sítios de Ligação , Estudos de Casos e Controles , Quimiocina CCL2/metabolismo , Colesterol/metabolismo , Feminino , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/genética , Inflamação/sangue , Inflamação/genética , Inflamação/prevenção & controle , Mediadores da Inflamação/sangue , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/agonistas , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/sangue , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Fenilacetatos/farmacologia , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Mensageiro/metabolismo , Transfecção , Células U937 , Fatores de Transcrição de p300-CBP/metabolismo
20.
FASEB J ; 28(12): 5376-87, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25183670

RESUMO

The importance of H2S as a physiological signaling molecule continues to develop, and ion channels are emerging as a major family of target proteins through which H2S exerts many actions. The purpose of the present study was to investigate its effects on T-type Ca(2+) channels. Using patch-clamp electrophysiology, we demonstrate that the H2S donor, NaHS (10 µM-1 mM) selectively inhibits Cav3.2 T-type channels heterologously expressed in HEK293 cells, whereas Cav3.1 and Cav3.3 channels were unaffected. The sensitivity of Cav3.2 channels to H2S required the presence of the redox-sensitive extracellular residue H191, which is also required for tonic binding of Zn(2+) to this channel. Chelation of Zn(2+) with N,N,N',N'-tetra-2-picolylethylenediamine prevented channel inhibition by H2S and also reversed H2S inhibition when applied after H2S exposure, suggesting that H2S may act via increasing the affinity of the channel for extracellular Zn(2+) binding. Inhibition of native T-type channels in 3 cell lines correlated with expression of Cav3.2 and not Cav3.1 channels. Notably, H2S also inhibited native T-type (primarily Cav3.2) channels in sensory dorsal root ganglion neurons. Our data demonstrate a novel target for H2S regulation, the T-type Ca(2+) channel Cav3.2, and suggest that such modulation cannot account for the pronociceptive effects of this gasotransmitter.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Animais , Western Blotting , Linhagem Celular , Células HEK293 , Humanos , Técnicas de Patch-Clamp , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA