Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.227
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39326417

RESUMO

We report the 1-year results from one patient as the preliminary analysis of a first-in-human phase I clinical trial (ChiCTR2300072200) assessing the feasibility of autologous transplantation of chemically induced pluripotent stem-cell-derived islets (CiPSC islets) beneath the abdominal anterior rectus sheath for type 1 diabetes treatment. The patient achieved sustained insulin independence starting 75 days post-transplantation. The patient's time-in-target glycemic range increased from a baseline value of 43.18% to 96.21% by month 4 post-transplantation, accompanied by a decrease in glycated hemoglobin, an indicator of long-term systemic glucose levels at a non-diabetic level. Thereafter, the patient presented a state of stable glycemic control, with time-in-target glycemic range at >98% and glycated hemoglobin at around 5%. At 1 year, the clinical data met all study endpoints with no indication of transplant-related abnormalities. Promising results from this patient suggest that further clinical studies assessing CiPSC-islet transplantation in type 1 diabetes are warranted.

2.
Chem Rev ; 124(13): 8307-8472, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38924776

RESUMO

Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.


Assuntos
Neoplasias , Humanos , Animais , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Ultrassonografia/métodos , Nanomedicina/métodos , Nanotecnologia/métodos
3.
Nature ; 583(7818): 752-759, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32728242

RESUMO

Cytosine DNA methylation is essential for mammalian development but understanding of its spatiotemporal distribution in the developing embryo remains limited1,2. Here, as part of the mouse Encyclopedia of DNA Elements (ENCODE) project, we profiled 168 methylomes from 12 mouse tissues or organs at 9 developmental stages from embryogenesis to adulthood. We identified 1,808,810 genomic regions that showed variations in CG methylation by comparing the methylomes of different tissues or organs from different developmental stages. These DNA elements predominantly lose CG methylation during fetal development, whereas the trend is reversed after birth. During late stages of fetal development, non-CG methylation accumulated within the bodies of key developmental transcription factor genes, coinciding with their transcriptional repression. Integration of genome-wide DNA methylation, histone modification and chromatin accessibility data enabled us to predict 461,141 putative developmental tissue-specific enhancers, the human orthologues of which were enriched for disease-associated genetic variants. These spatiotemporal epigenome maps provide a resource for studies of gene regulation during tissue or organ progression, and a starting point for investigating regulatory elements that are involved in human developmental disorders.


Assuntos
Metilação de DNA , Epigenoma , Feto/embriologia , Feto/metabolismo , Animais , Animais Recém-Nascidos , Cromatina/genética , Cromatina/metabolismo , Doença/genética , Regulação para Baixo , Elementos Facilitadores Genéticos/genética , Repressão Epigenética , Feminino , Inativação Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise Espaço-Temporal
4.
Nature ; 583(7818): 744-751, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32728240

RESUMO

The Encyclopedia of DNA Elements (ENCODE) project has established a genomic resource for mammalian development, profiling a diverse panel of mouse tissues at 8 developmental stages from 10.5 days after conception until birth, including transcriptomes, methylomes and chromatin states. Here we systematically examined the state and accessibility of chromatin in the developing mouse fetus. In total we performed 1,128 chromatin immunoprecipitation with sequencing (ChIP-seq) assays for histone modifications and 132 assay for transposase-accessible chromatin using sequencing (ATAC-seq) assays for chromatin accessibility across 72 distinct tissue-stages. We used integrative analysis to develop a unified set of chromatin state annotations, infer the identities of dynamic enhancers and key transcriptional regulators, and characterize the relationship between chromatin state and accessibility during developmental gene regulation. We also leveraged these data to link enhancers to putative target genes and demonstrate tissue-specific enrichments of sequence variants associated with disease in humans. The mouse ENCODE data sets provide a compendium of resources for biomedical researchers and achieve, to our knowledge, the most comprehensive view of chromatin dynamics during mammalian fetal development to date.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Conjuntos de Dados como Assunto , Desenvolvimento Fetal/genética , Histonas/metabolismo , Anotação de Sequência Molecular , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Cromatina/química , Sequenciamento de Cromatina por Imunoprecipitação , Doença/genética , Elementos Facilitadores Genéticos/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Variação Genética , Histonas/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos/genética , Reprodutibilidade dos Testes , Transposases/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(17): e2216247120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068253

RESUMO

In Parkinson's disease (PD), reduced dopamine levels in the basal ganglia have been associated with altered neuronal firing and motor dysfunction. It remains unclear whether the altered firing rate or pattern of basal ganglia neurons leads to parkinsonism-associated motor dysfunction. In the present study, we show that increased histaminergic innervation of the entopeduncular nucleus (EPN) in the mouse model of PD leads to activation of EPN parvalbumin (PV) neurons projecting to the thalamic motor nucleus via hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to postsynaptic H2R. Simultaneously, this effect is negatively regulated by presynaptic H3R activation in subthalamic nucleus (STN) glutamatergic neurons projecting to the EPN. Notably, the activation of both types of receptors ameliorates parkinsonism-associated motor dysfunction. Pharmacological activation of H2R or genetic upregulation of HCN2 in EPNPV neurons, which reduce neuronal burst firing, ameliorates parkinsonism-associated motor dysfunction independent of changes in the neuronal firing rate. In addition, optogenetic inhibition of EPNPV neurons and pharmacological activation or genetic upregulation of H3R in EPN-projecting STNGlu neurons ameliorate parkinsonism-associated motor dysfunction by reducing the firing rate rather than altering the firing pattern of EPNPV neurons. Thus, although a reduced firing rate and more regular firing pattern of EPNPV neurons correlate with amelioration in parkinsonism-associated motor dysfunction, the firing pattern appears to be more critical in this context. These results also confirm that targeting H2R and its downstream HCN2 channel in EPNPV neurons and H3R in EPN-projecting STNGlu neurons may represent potential therapeutic strategies for the clinical treatment of parkinsonism-associated motor dysfunction.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Núcleo Subtalâmico , Camundongos , Animais , Núcleo Entopeduncular , Tálamo , Transtornos Parkinsonianos/terapia , Receptores Histamínicos
8.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38168840

RESUMO

Gestational diabetes mellitus (GDM) is a common complication of pregnancy, which has significant adverse effects on both the mother and fetus. The incidence of GDM is increasing globally, and early diagnosis is critical for timely treatment and reducing the risk of poor pregnancy outcomes. GDM is usually diagnosed and detected after 24 weeks of gestation, while complications due to GDM can occur much earlier. Copy number variations (CNVs) can be a possible biomarker for GDM diagnosis and screening in the early gestation stage. In this study, we proposed a machine-learning method to screen GDM in the early stage of gestation using cell-free DNA (cfDNA) sequencing data from maternal plasma. Five thousand and eighty-five patients from north regions of Mainland China, including 1942 GDM, were recruited. A non-overlapping sliding window method was applied for CNV coverage screening on low-coverage (~0.2×) sequencing data. The CNV coverage was fed to a convolutional neural network with attention architecture for the binary classification. The model achieved a classification accuracy of 88.14%, precision of 84.07%, recall of 93.04%, F1-score of 88.33% and AUC of 96.49%. The model identified 2190 genes associated with GDM, including DEFA1, DEFA3 and DEFB1. The enriched gene ontology (GO) terms and KEGG pathways showed that many identified genes are associated with diabetes-related pathways. Our study demonstrates the feasibility of using cfDNA sequencing data and machine-learning methods for early diagnosis of GDM, which may aid in early intervention and prevention of adverse pregnancy outcomes.


Assuntos
Ácidos Nucleicos Livres , Aprendizado Profundo , Diabetes Gestacional , beta-Defensinas , Feminino , Gravidez , Humanos , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/genética , Variações do Número de Cópias de DNA , Resultado da Gravidez , Ácidos Nucleicos Livres/genética
9.
Nat Mater ; 23(5): 695-702, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38287128

RESUMO

π-Conjugated polymers (CPs) have broad applications in high-performance optoelectronics, energy storage, sensors and biomedicine. However, developing green and efficient methods to precisely synthesize alternating CP structures on a large scale remains challenging and critical for their industrialization. Here a room-temperature, scalable and homogeneous Suzuki-Miyaura-type polymerization reaction is developed with broad generality validated for 24 CPs including donor-donor, donor-acceptor and acceptor-acceptor connectivities, yielding device-quality polymers with high molecular masses. Furthermore, the polymerization protocol significantly reduces homocoupling structural defects, yielding more structurally regular and higher-performance electronic materials and optoelectronic devices than conventional thermally activated polymerizations. Experimental and theoretical studies reveal that a borate transmetalation process plays a key role in suppressing protodeboronation, which is critical for large-scale structural regularity. Thus, these results provide a general polymerization tool for the scalable production of device-quality CPs with alternating structural regularity.

10.
Acc Chem Res ; 57(6): 981-991, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38431881

RESUMO

ConspectusSince the first bilayer-structured organic solar cells (OSCs) in 1986, fullerenes and their derivatives have dominated the landscape for two decades due to their unique properties. In recent years, the breakthrough in nonfullerene acceptors (NFAs) was mainly attributed to the development of fused-ring electron acceptors (FREAs), whose photovoltaic performance surpassed that of fullerene derivatives. Through the unremitting efforts of the whole community, the power conversion efficiencies (PCEs) have surpassed 19% in FREA-based OSCs. However, FREAs generally suffered from complex synthetic approaches and high product costs, which hindered large-scale production. Therefore, many researchers are seeking a new type of NFA to achieve cost-effective, highly efficient OSCs.In collaboration with Marks and Facchetti in 2012, Huang et al. (Huang, H. J. Am. Chem. Soc. 2012, 134, 10966-10973, 10.1021/ja303401s) proposed the concept of "noncovalent conformational locks" (NoCLs). In the following years, our group has been focusing on the theoretical and experimental exploration of NoCLs, revealing their fundamental nature, formulating a simple descriptor for quantifying their strength, and employing this approach to achieve high-performance organic/polymeric semiconductors for optoelectronics, such as OSCs, thin-film transistors, room-temperature phosphorescence, and photodetectors. The NoCLs strategy has been proven to be a simple and effective approach for enhancing molecular rigidity and planarity, thus improving the charge transport mobilities of organic/polymeric semiconductors, attributed to reduced reorganization energy and suppressed nonradiative decay.In 2018, Chen et al. (Li, S. Adv. Mater. 2018, 30, 1705208, 10.1002/adma.201705208) reported the first example of nonfused-ring electron acceptors (NFREAs) with intramolecular noncovalent F···H interactions. The NoCLs strategy is essential in NFREAs, as it simplifies the conjugated structures while maintaining high coplanarity comparable to that of FREAs. Due to their simple structures and concise synthesis routes, NFREAs show great potential for achieving cost-effective and highly efficient OSCs. In this Account, we provide an overview of our efforts in developing NFREAs with the NoCLs strategy. We begin with a discussion on the distinct features of NFREAs compared with FREAs, and the structural simplification from FREAs to NFREAs to completely NFREAs. Next, we examine several selected typical examples of NFREAs with remarkable photovoltaic performance, aiming to provide an in-depth exploration of the molecular design principle and structure-property-performance relationships. Then, we discuss how to achieve a balance among efficiency, stability, and cost through a two-in-one strategy of polymerized NFREAs (PNFREAs). Finally, we offer our views on the current challenges and future prospects of NFREAs. We hope this Account will trigger intensive research interest in this field, thus propelling OSCs into a new stage.

11.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38365269

RESUMO

The aim of this paper is to investigate dynamical functional disturbance in central executive network in minimal hepatic encephalopathy and determine its association with metabolic disorder and cognitive impairment. Data of magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging were obtained from 27 cirrhotic patients without minimal hepatic encephalopathy, 20 minimal hepatic encephalopathy patients, and 24 healthy controls. Central executive network was identified utilizing seed-based correlation approach. Dynamic functional connectivity across central executive network was calculated using sliding-window approach. Functional states were estimated by K-means clustering. Right dorsolateral prefrontal cortex metabolite ratios (i.e. glutamate and glutamine complex/total creatine, myo-inositol / total creatine, and choline / total creatine) were determined. Neurocognitive performance was determined by psychometric hepatic encephalopathy scores. Minimal hepatic encephalopathy patients had decreased myo-inositol / total creatine and choline / total creatine and increased glutamate and glutamine complex / total creatine in right dorsolateral prefrontal cortex (all P ≤ 0.020); decreased static functional connectivity between bilateral dorsolateral prefrontal cortex and between right dorsolateral prefrontal cortex and lateral-inferior temporal cortex (P ≤ 0.001); increased frequency and mean dwell time in state-1 (P ≤ 0.001), which exhibited weakest functional connectivity. Central executive network dynamic functional indices were significantly correlated with right dorsolateral prefrontal cortex metabolic indices and psychometric hepatic encephalopathy scores. Right dorsolateral prefrontal cortex myo-inositol / total creatine and mean dwell time in state-1 yielded best potential for diagnosing minimal hepatic encephalopathy. Dynamic functional disturbance in central executive network may contribute to neurocognitive impairment and could be correlated with metabolic disorder.


Assuntos
Encefalopatia Hepática , Humanos , Encefalopatia Hepática/complicações , Encefalopatia Hepática/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Glutamina/metabolismo , Creatina/metabolismo , Cirrose Hepática/complicações , Cirrose Hepática/metabolismo , Ácido Glutâmico/metabolismo , Inositol/metabolismo , Colina/metabolismo , Encéfalo
12.
Nano Lett ; 24(15): 4462-4470, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38574275

RESUMO

Micro/nanofiber-based face masks are recommended as personal protective equipment (PPE) against particulate matter (PM), especially PM0.3. Ensuring thermal comfort in daily use face masks is essential in many situations. Here, radiative thermal management is introduced into face masks to elevate the user comfort. An interlayered poly(lactic acid) (PLA) micro/nanofibrous filter effectively captures PM0.3 (99.69%) with minimal pressure drop (49 Pa). Thermal regulation is accomplished by controlling the mid-infrared (MIR) emissivity of the face mask's outer surface. Cooling face masks feature cotton nonwovens with high MIR emissivity (90.7%) for heat dissipation, while warming face masks utilize perforated Al/PE films with minimal MIR emissivity (10.7%) for warmth retention. Skin temperature measurements indicate that the skin covered by the cooling face mask could be 1.1 °C lower than that covered by the 3M face mask, while the skin covered by the warming face mask could be 1.3 °C higher than that covered by the 3M face mask.

13.
Nano Lett ; 24(4): 1197-1204, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38227967

RESUMO

Electrocatalytic reduction of nitrate to ammonia (NO3RR) is gaining attention for low carbon emissions and environmental protection. However, low ammonia production rate and poor selectivity have remained major challenges in this multi-proton coupling process. Herein, we report a facile strategy toward a novel Fe-based hybrid structure composed of Fe single atoms and Fe3C atomic clusters that demonstrates outstanding performance for synergistic electrocatalytic NO3RR. By operando synchrotron Fourier transform infrared spectroscopy and theoretical computation, we clarify that Fe single atoms serve as the active site for NO3RR, while Fe3C clusters facilitate H2O dissociation to provide protons (*H) for continued hydrogenation reactions. As a result, the Fe-based electrocatalyst exhibits ammonia Faradaic efficiency of nearly 100%, with a corresponding production rate of 24768 µg h-1 cm-2 at -0.4 V vs RHE, exceeding most reported metal-based catalysts. This research provides valuable guidance toward multi-step reactions.

14.
Gut ; 73(4): 682-690, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38123994

RESUMO

OBJECTIVE: This randomised trial aimed to address whether endoscopic variceal ligation (EVL) or propranolol (PPL) is more effective at preventing initial oesophageal variceal bleeding (EVB) in patients with hepatocellular carcinoma (HCC). DESIGN: Patients with HCC and medium-to-large oesophageal varices (EVs) but without previous EVB were randomised to receive EVL (every 3-4 weeks until variceal eradication) or PPL (up to 320 mg daily) at a 1:1 ratio. Long-term follow-up data on EVB, other upper gastrointestinal bleeding (UGIB), non-bleeding liver decompensation, overall survival (OS) and adverse events (AEs) were analysed using competing risk regression. RESULTS: Between June 2011 and April 2021, 144 patients were randomised to receive EVL (n=72) or PPL (n=72). In the EVL group, 7 patients experienced EVB, and 30 died; in the PPL group, 19 patients had EVB, and 40 died. The EVL group had a lower cumulative incidence of EVB (Gray's test, p=0.009) than its counterpart, with no mortality difference (Gray's test, p=0.085). For patients with Barcelona Clinic Liver Cancer (BCLC) stage A/B, EVL was better than PPL in reducing EVB (p<0.001) and mortality (p=0.003). For patients beyond BCLC stage B, between-group outcomes were similar. Other UGIB, non-bleeding liver decompensation and AEs did not differ between groups. A competing risk regression model confirmed the prognostic value of EVL. CONCLUSION: EVL is superior to PPL in preventing initial EVB in patients with HCC. The benefits of EVL on EVB and OS may be limited to patients with BCLC stage A/B and not to those with BCLC stage C/D. TRIAL REGISTRATION NUMBER: NCT01970748.


Assuntos
Carcinoma Hepatocelular , Varizes Esofágicas e Gástricas , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/cirurgia , Varizes Esofágicas e Gástricas/complicações , Varizes Esofágicas e Gástricas/cirurgia , Hemorragia Gastrointestinal/etiologia , Hemorragia Gastrointestinal/prevenção & controle , Ligadura/efeitos adversos , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/cirurgia , Prevenção Primária , Propranolol/uso terapêutico
15.
Circulation ; 148(7): 589-606, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37203562

RESUMO

BACKGROUND: Aortic dissection (AD) is a fatal cardiovascular disorder without effective medications due to unclear pathogenic mechanisms. Bestrophin3 (Best3), the predominant isoform of bestrophin family in vessels, has emerged as critical for vascular pathological processes. However, the contribution of Best3 to vascular diseases remains elusive. METHODS: Smooth muscle cell-specific and endothelial cell-specific Best3 knockout mice (Best3SMKO and Best3ECKO, respectively) were engineered to investigate the role of Best3 in vascular pathophysiology. Functional studies, single-cell RNA sequencing, proteomics analysis, and coimmunoprecipitation coupled with mass spectrometry were performed to evaluate the function of Best3 in vessels. RESULTS: Best3 expression in aortas of human AD samples and mouse AD models was decreased. Best3SMKO but not Best3ECKO mice spontaneously developed AD with age, and the incidence reached 48% at 72 weeks of age. Reanalysis of single-cell transcriptome data revealed that reduction of fibromyocytes, a fibroblast-like smooth muscle cell cluster, was a typical feature of human ascending AD and aneurysm. Consistently, Best3 deficiency in smooth muscle cells decreased the number of fibromyocytes. Mechanistically, Best3 interacted with both MEKK2 and MEKK3, and this interaction inhibited phosphorylation of MEKK2 at serine153 and MEKK3 at serine61. Best3 deficiency induced phosphorylation-dependent inhibition of ubiquitination and protein turnover of MEKK2/3, thereby activating the downstream mitogen-activated protein kinase signaling cascade. Furthermore, restoration of Best3 or inhibition of MEKK2/3 prevented AD progression in angiotensin II-infused Best3SMKO and ApoE-/- mice. CONCLUSIONS: These findings unveil a critical role of Best3 in regulating smooth muscle cell phenotypic switch and aortic structural integrity through controlling MEKK2/3 degradation. Best3-MEKK2/3 signaling represents a novel therapeutic target for AD.


Assuntos
Dissecção Aórtica , Músculo Liso Vascular , Animais , Humanos , Camundongos , Dissecção Aórtica/genética , Sistema de Sinalização das MAP Quinases , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fosforilação
16.
Immunology ; 173(1): 152-171, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38829009

RESUMO

Overexpression of T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) on T cells has been observed in smokers. However, whether and how galectin-9 (Gal-9)/TIM-3 signal between T-regulatory cells (Tregs) and type 17 helper (Th17) cells contributes to tobacco smoke-induced airway inflammation remains unclear. Here, we aimed to explore the role of the Gal-9/TIM-3 signal between Tregs and Th17 cells during chronic tobacco smoke exposure. Tregs phenotype and the expression of TIM-3 on CD4+ T cells were detected in a mouse model of experimental emphysema. The role of TIM-3 in CD4+ T cells was explored in a HAVCR2-/- mouse model and in mice that received recombinant anti-TIM3. The crosstalk between Gal-9 and Tim-3 was evaluated by coculture Tregs with effector CD4+ T cells. We also invested the expression of Gal-9 in Tregs in patients with COPD. Our study revealed that chronic tobacco smoke exposure significantly reduces the frequency of Tregs in the lungs of mice and remarkably shapes the heterogeneity of Tregs by downregulating the expression of Gal-9. We observed a pro-inflammatory but restrained phenotypic transition of CD4+ T cells after tobacco smoke exposure, which was maintained by TIM-3. The restrained phenotype of CD4+ T cells was perturbed when TIM-3 was deleted or neutralised. Tregs from the lungs of mice with emphysema displayed a blunt ability to inhibit the differentiation and proliferation of Th17 cells. The inhibitory function of Tregs was partially restored by using recombinant Gal-9. The interaction between Gal-9 and TIM-3 inhibits the differentiation of Th17 cells and promotes apoptosis of CD4+ T cells, possibly by interfering with the expression of retinoic acid receptor-related orphan receptor gamma t. The expression of Gal-9 in Tregs was reduced in patients with COPD, which was associated with Th17 response and lung function. These findings present a new paradigm that impairment of Gal-9/Tim-3 crosstalk between Tregs and Th17 cells during chronic tobacco smoke exposure promotes tobacco smoke-induced airway/lung inflammation.


Assuntos
Galectinas , Receptor Celular 2 do Vírus da Hepatite A , Doença Pulmonar Obstrutiva Crônica , Linfócitos T Reguladores , Células Th17 , Animais , Feminino , Humanos , Masculino , Camundongos , Modelos Animais de Doenças , Galectinas/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/genética , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais , Fumar/efeitos adversos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th17/imunologia , Células Th17/metabolismo
17.
J Am Chem Soc ; 146(40): 27779-27793, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39316519

RESUMO

Sonopiezoelectric therapy harnesses piezoelectric materials to efficiently generate destructive reactive oxygen species when exposed to ultrasound. This innovative approach shows promise for tumor treatment by combining precise targeting of tumor sites through noninvasive ultrasound control with high reactive oxygen species generation capabilities via the piezoelectric effect. This study utilizes a theoretical-guided method to manipulate atomic vacancy defects and regulate the Peierls distortion in 1T'-ReS2 nanosheets, thereby imparting them with sonopiezoelectric properties not inherent to the original material. Furthermore, the plentiful unsaturated sites of ReS2 nanosheets endow them with excellent catalase- and peroxidase-mimicking activities. The reactive oxygen species generation by the engineered ReS2 nanosheets also leads to the depletion of glutathione. These capabilities are leveraged for tumor ferroptosis therapy via the classical pathway involving the 7-member 11-glutathione-GPX4 signaling axis, alongside the downregulation of dihydroorotate dehydrogenase and ferritin levels and the upregulation of fatty acid CoA ligase 4 expression. This showcases the innovative approach and potential applications of employing 1T'-ReS2 nanosheets in cancer treatment through theoretical design and materials engineering.


Assuntos
Ferroptose , Nanoestruturas , Ferroptose/efeitos dos fármacos , Humanos , Nanoestruturas/química , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico por imagem
18.
J Am Chem Soc ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39394051

RESUMO

Understanding the characteristics of interfacial hydroxyl (OH) at the solid/liquid electrochemical interface is crucial for deciphering synergistic catalysis. However, it remains challenging to elucidate the influences of spatial distance between interfacial OH and neighboring reactants on reaction kinetics at the atomic level. Herein, we visualize the distance-dependent synergistic interaction in heterogeneous dual-site catalysis by using ex-situ infrared nanospectroscopy and in situ infrared spectroscopy techniques. These spectroscopic techniques achieve direct identification of the spatial distribution of synergistic species and reveal that OH facilitates the reactant deprotonation process depending on site distances in dual-site catalysts. Via modulating Ir-Co pair distances, we find that the dynamic equilibrium between generation and consumption of OH accounts for high-efficiency synergism at the optimized distance of 7.9 Å. At farther or shorter distances, spatial inaccessibility and resistance of OH with intermediates lead to OH accumulation, thereby diminishing the synergistic effect. Hence, a volcano-shaped curve has been established between the spatial distance and mass activity using formic acid oxidation as the probe reaction. This notion could also be extended to oxophilic metals, like Ir-Ru pairs, where volcano curves and dynamic equilibrium further evidence the universal significance of spatial distances.

19.
J Am Chem Soc ; 146(29): 20323-20332, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38995375

RESUMO

Addressing the sluggish kinetics in the alkaline hydrogen oxidation reaction (HOR) is a pivotal yet challenging step toward the commercialization of anion-exchange membrane fuel cells (AEMFCs). Here, we have successfully immobilized indium (In) atoms in an orderly fashion into platinum (Pt) nanoparticles supported by reduced graphene oxide (denoted as O-Pt3In/rGO), significantly enhancing alkaline HOR kinetics. We have revealed that the ordered atomic matrix enables uniform and optimized hydrogen binding energy (HBE), hydroxyl binding energy (OHBE), and carbon monoxide binding energy (COBE) across the catalyst. With a mass activity of 2.3066 A mg-1 at an overpotential of 50 mV, over 10 times greater than that of Pt/C, the catalyst also demonstrates admirable CO resistance and stability. Importantly, the AEMFC implementing this catalyst as the anode catalyst has achieved an impressive power output compared to Pt/C. This work not only highlights the significance of constructing ordered oxophilic sites for alkaline HOR but also sheds light on the design of well-structured catalysts for energy conversion.

20.
J Neurochem ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374168

RESUMO

High-fat diet (HFD)-induced obesity induces peripheral inflammation and hypothalamic pathogenesis linking the activation of astrocytes and microglia. Clinical evidence indicates a positive correlation between obesity and psychiatric disorders, such as depression. The connectivity of the frontal-striatal (FS) circuit, involving the caudate putamen (CPu) and anterior cingulate cortex (ACC) within the prefrontal cortex (PFC), is known for its role in stress-induced depression. Thus, there is a need for a thorough investigation into whether chronic obesity-induced gliosis, characterized by the activation of astrocytes and microglia, in these brain regions of individuals with chronic obesity. The results revealed increased S100ß+ astrocytes and Iba1+ microglia in the CPu and ACC of male obese mice, along with immune cell accumulation in meningeal lymphatic drainage. Activated GFAP+ astrocytes and Iba1+ microglia were observed in the corpus callosum of obese mice. Gliosis in the CPu and ACC was linked to elevated cleaved caspase-3 levels, indicating potential neural cell death by chronic HFD feeding. There was a loss of myelin and adenomatous polyposis coli (APC)+ oligodendrocytes (OLs) in the corpus callosum, an area known to be linked with injury to the CPu. Additionally, reduced levels of aquaporin-4 (AQP4), a protein associated within the glymphatic systems, were noted in the CPu and ACC, while ciliary neurotrophic factor (CNTF) gene expression was upregulated in these brain regions of obese mice. The in vitro study revealed that high-dose CNTF causing a trend of reduced astrocytic AQP4 expression, but it significantly impaired OL maturation. This pathological evidence highlights that prolonged HFD consumption induces persistent FS gliosis and demyelination in the corpus callosum. An elevated level of CNTF appears to act as a potential regulator, leading to AQP4 downregulation in the FS areas and demyelination in the corpus callosum. This cascade of events might contribute to neural cell damage within these regions and disrupt the glymphatic flow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA