Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Nano Lett ; 24(3): 814-821, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193454

RESUMO

Reducing building energy consumption, improving aesthetics, and improving occupant privacy as well as comfort by dynamically adjusting solar radiation are important application areas for electrochromic (EC) smart windows. However, the current transition metal oxides still cannot meet the requirements of neutral coloration and large optical modulation. We report NiMoO4 nanosheet films directly grown on fluorine-doped tin oxide glasses. The as-grown NiMoO4 film not only achieves neutral coloration from transparent to dark brown but also shows an ultralarge optical modulation (86.8% at 480 nm) and excellent cycling stability (99.4% retention of maximum optical modulation after 1500 cycles). Meanwhile, an EC device demonstrating good EC performance was constructed. These results will greatly promote the research and development of binary transition metal oxides for both EC and energy-storage applications, and NiMoO4 films may be an excellent candidate to replace NiO films as ion-storage layers in complementary EC devices with WO3 films as EC layers.

2.
PLoS Pathog ; 18(12): e1011027, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36469533

RESUMO

Pseudomonas aeruginosa, a major inhabitant of numerous environmental reservoirs, is a momentous opportunistic human pathogen associated with severe infections even death in the patients suffering from immune deficiencies or metabolic diseases. Type III secretion system (T3SS) employed by P. aeruginosa to inject effector proteins into host cells is one of the pivotal virulence factors pertaining to acute infections caused by this pathogen. Previous studies showed that P. aeruginosa T3SS is regulated by various environmental cues such as calcium concentration and the host signal spermidine. However, how T3SS is regulated and expressed particularly under the ever-changing environmental conditions remains largely elusive. In this study, we reported that a tRNA modification enzyme PA3980, designated as MiaB, positively regulated T3SS gene expression in P. aeruginosa and was essential for the induced cytotoxicity of human lung epithelial cells. Further genetic assays revealed that MiaB promoted T3SS gene expression by repressing the LadS-Gac/Rsm signaling pathway and through the T3SS master regulator ExsA. Interestingly, ladS, gacA, rsmY and rsmZ in the LadS-Gac/Rsm signaling pathway seemed potential targets under the independent regulation of MiaB. Moreover, expression of MiaB was found to be induced by the cAMP-dependent global regulator Vfr as well as the spermidine transporter-dependent signaling pathway and thereafter functioned to mediate their regulation on the T3SS gene expression. Together, these results revealed a novel regulatory mechanism for MiaB, with which it integrates different environmental cues to modulate T3SS gene expression in this important bacterial pathogen.


Assuntos
Pseudomonas aeruginosa , Sistemas de Secreção Tipo III , Humanos , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Pseudomonas aeruginosa/metabolismo , Regulação Bacteriana da Expressão Gênica , Sinais (Psicologia) , Espermidina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA de Transferência/metabolismo
3.
Plant Cell ; 33(8): 2685-2700, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34003932

RESUMO

MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1), a rice (Oryza sativa) Argonaute (AGO) protein, has been reported to function specifically at premeiotic and meiotic stages of germ cell development and is associated with a novel class of germ cell-specific small noncoding RNAs called phased small RNAs (phasiRNAs). MEL1 accumulation is temporally and spatially regulated and is eliminated after meiosis. However, the metabolism and turnover (i.e. the homeostasis) of MEL1 during germ cell development remains unknown. Here, we show that MEL1 is ubiquitinated and subsequently degraded via the proteasome pathway in vivo during late sporogenesis. Abnormal accumulation of MEL1 after meiosis leads to a semi-sterile phenotype. We identified a monocot-specific E3 ligase, XBOS36, a CULLIN RING-box protein, that is responsible for the degradation of MEL1. Ubiquitination at four K residues at the N terminus of MEL1 by XBOS36 induces its degradation. Importantly, inhibition of MEL1 degradation either by XBOS36 knockdown or by MEL1 overexpression prevents the formation of pollen at the microspore stage. Further mechanistic analysis showed that disrupting MEL1 homeostasis in germ cells leads to off-target cleavage of phasiRNA target genes. Our findings thus provide insight into the communication between a monocot-specific E3 ligase and an AGO protein during plant reproductive development.


Assuntos
Oryza/fisiologia , Proteínas de Plantas/metabolismo , Esporos/crescimento & desenvolvimento , Ubiquitina/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Regulação da Expressão Gênica de Plantas , Lisina/metabolismo , Meiose , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/crescimento & desenvolvimento , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , RNA de Plantas/genética , RNA de Plantas/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Esporos/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
Eur Radiol ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329503

RESUMO

OBJECTIVES: Anti-HER2 targeted therapy significantly reduces risk of relapse in HER2 + breast cancer. New measures are needed for a precise risk stratification to guide (de-)escalation of anti-HER2 strategy. METHODS: A total of 726 HER2 + cases who received no/single/dual anti-HER2 targeted therapies were split into three respective cohorts. A deep learning model (DeepTEPP) based on preoperative breast magnetic resonance (MR) was developed. Patients were scored and categorized into low-, moderate-, and high-risk groups. Recurrence-free survival (RFS) was compared in patients with different risk groups according to the anti-HER2 treatment they received, to validate the value of DeepTEPP in predicting treatment efficacy and guiding anti-HER2 strategy. RESULTS: DeepTEPP was capable of risk stratification and guiding anti-HER2 treatment strategy: DeepTEPP-Low patients (60.5%) did not derive significant RFS benefit from trastuzumab (p = 0.144), proposing an anti-HER2 de-escalation. DeepTEPP-Moderate patients (19.8%) significantly benefited from trastuzumab (p = 0.048), but did not obtain additional improvements from pertuzumab (p = 0.125). DeepTEPP-High patients (19.7%) significantly benefited from dual HER2 blockade (p = 0.045), suggesting an anti-HER2 escalation. CONCLUSIONS: DeepTEPP represents a pioneering MR-based deep learning model that enables the non-invasive prediction of adjuvant anti-HER2 effectiveness, thereby providing valuable guidance for anti-HER2 (de-)escalation strategies. DeepTEPP provides an important reference for choosing the appropriate individualized treatment in HER2 + breast cancer patients, warranting prospective validation. CLINICAL RELEVANCE STATEMENT: We built an MR-based deep learning model DeepTEPP, which enables the non-invasive prediction of adjuvant anti-HER2 effectiveness, thus guiding anti-HER2 (de-)escalation strategies in early HER2-positive breast cancer patients. KEY POINTS: • DeepTEPP is able to predict anti-HER2 effectiveness and to guide treatment (de-)escalation. • DeepTEPP demonstrated an impressive prognostic efficacy for recurrence-free survival and overall survival. • To our knowledge, this is one of the very few, also the largest study to test the efficacy of a deep learning model extracted from breast MR images on HER2-positive breast cancer survival and anti-HER2 therapy effectiveness prediction.

5.
J Chem Inf Model ; 64(11): 4500-4510, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38745385

RESUMO

Human calcitonin (hCT) regulates calcium-phosphorus metabolism, but its amyloid aggregation disrupts physiological activity, increases thyroid carcinoma risk, and hampers its clinical use for bone-related diseases like osteoporosis and Paget's disease. Improving hCT with targeted modifications to mitigate amyloid formation while maintaining its function holds promise as a strategy. Understanding how each residue in hCT's amyloidogenic core affects its structure and aggregation dynamics is crucial for designing effective analogues. Mutants F16L-hCT and F19L-hCT, where Phe residues in the core are replaced with Leu as in nonamyloidogenic salmon calcitonin, showed different aggregation kinetics. However, the molecular effects of these substitutions in hCT are still unclear. Here, we systematically investigated the folding and self-assembly conformational dynamics of hCT, F16L-hCT, and F19L-hCT through multiple long-time scale independent atomistic discrete molecular dynamics (DMD) simulations. Our results indicated that the hCT monomer primarily assumed unstructured conformations with dynamic helices around residues 4-12 and 14-21. During self-assembly, the amyloidogenic core of hCT14-21 converted from dynamic helices to ß-sheets. However, substituting F16L did not induce significant conformational changes, as F16L-hCT exhibited characteristics similar to those of wild-type hCT in both monomeric and oligomeric states. In contrast, F19L-hCT exhibited substantially more helices and fewer ß-sheets than did hCT, irrespective of their monomers or oligomers. The substitution of F19L significantly enhanced the stability of the helical conformation for hCT14-21, thereby suppressing the helix-to-ß-sheet conformational conversion. Overall, our findings elucidate the molecular mechanisms underlying hCT aggregation and the effects of F16L and F19L substitutions on the conformational dynamics of hCT, highlighting the critical role of F19 as an important target in the design of amyloid-resistant hCT analogs for future clinical applications.


Assuntos
Calcitonina , Simulação de Dinâmica Molecular , Agregados Proteicos , Conformação Proteica , Humanos , Calcitonina/química , Calcitonina/metabolismo , Substituição de Aminoácidos , Mutação
6.
Environ Sci Technol ; 58(1): 510-521, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38100654

RESUMO

Fluorinated liquid crystal monomers (FLCMs) have been suggested as emerging contaminants, raising global concern due to their frequent occurrence, potential toxic effects, and endurance capacity in the environment. However, the environmental fate of the FLCMs remains unknown. To fill this knowledge gap, we investigated the aerobic microbial transformation mechanisms of an important FLCM, 4-[difluoro(3,4,5-trifluorophenoxy)methyl]-3, 5-difluoro-4'-propylbiphenyl (DTMDPB), using an enrichment culture termed as BG1. Our findings revealed that 67.5 ± 2.1% of the initially added DTMDPB was transformed in 10 days under optimal conditions. A total of 14 microbial transformation products obtained due to a series of reactions (e.g., reductive defluorination, ether bond cleavage, demethylation, oxidative hydroxylation and aromatic ring opening, sulfonation, glucuronidation, O-methylation, and thiolation) were identified. Consortium BG1 harbored essential genes that could transform DTMDPB, such as dehalogenation-related genes [e.g., glutathione S-transferase gene (GST), 2-haloacid dehalogenase gene (2-HAD), nrdB, nuoC, and nuoD]; hydroxylating-related genes hcaC, ubiH, and COQ7; aromatic ring opening-related genes ligB and catE; and methyltransferase genes ubiE and ubiG. Two DTMDPB-degrading strains were isolated, which are affiliated with the genus Sphingopyxis and Agromyces. This study provides a novel insight into the microbial transformation of FLCMs. The findings of this study have important implications for the development of bioremediation strategies aimed at addressing sites contaminated with FLCMs.


Assuntos
Cristais Líquidos , Biodegradação Ambiental , Hidroxilação
7.
J Appl Clin Med Phys ; 25(5): e14368, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657114

RESUMO

OBJECTIVE: Alzheimer's disease, an irreversible neurological condition, demands timely diagnosis for effective clinical intervention. This study employs radiomics analysis to assess image features in default mode network cerebral perfusion imaging among individuals with cognitive impairment. METHODS: A radiomics analysis of cerebral perfusion imaging was conducted on 117 patients with cognitive impairment. They were divided into training and validation sets in a 7:3 ratio. Least Absolute Shrinkage and Selection Operator (LASSO) and Random Forest were employed to select and model image features, followed by logistic regression analysis of LASSO and Random Forest results. Diagnostic performance was assessed by calculating the area under the curve (AUC). RESULTS: In the training set, LASSO achieved AUC of 0.978, Random Forest had an AUC of 0.933. In the validation set, LASSO had AUC of 0.859, Random Forest had AUC of 0.986. By conducting Logistic Regression analysis in combination with LASSO and Random Forest, we identified a total of five radiomics features, with four related to morphology and one to textural features, originating from the medial prefrontal cortex and middle temporal gyrus. In the training set, Logistic Regression achieved AUC of 0.911, while in the validation set, it attained AUC of 0.925. CONCLUSION: The medial prefrontal cortex and middle temporal gyrus are the two brain regions within the default mode network that hold the highest significance for Alzheimer's disease diagnosis. Radiomics analysis contributes to the clinical assessment of Alzheimer's disease by delving into image data to extract deeper layers of information.


Assuntos
Doença de Alzheimer , Imagem de Perfusão , Humanos , Doença de Alzheimer/diagnóstico por imagem , Feminino , Masculino , Idoso , Imagem de Perfusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Circulação Cerebrovascular/fisiologia , Pessoa de Meia-Idade , Disfunção Cognitiva/diagnóstico por imagem , Idoso de 80 Anos ou mais , Imageamento por Ressonância Magnética/métodos , Prognóstico , Radiômica
8.
Mikrochim Acta ; 191(2): 101, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231363

RESUMO

Hyaluronidase (HAase) is an important endoglycosidase involved in numerous physiological and pathological processes, such as apoptosis, senescence, and cancer progression. Simple, convenient, and sensitive detection of HAase is important for clinical diagnosis. Herein, an easy-to-operate multicolor visual sensing strategy was developed for HAase determination. The proposed sensor was composed of an enzyme-responsive hydrogel and a nanochromogenic system (gold nanobipyramids (AuNBPs)). The enzyme-responsive hydrogel, formed by polyethyleneimine-hyaluronic acid (PEI-HA), was specifically hydrolyzed with HAase, leading to the release of platinum nanoparticles (PtNPs). Subsequently, PtNPs catalyzed the mixed system of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 to produce TMB2+ under acidic conditions. Then, TMB2+ effectively etched the AuNBPs and resulted in morphological changes in the AuNBPs, accompanied by a blueshift in the localized surface plasmon resonance peak and vibrant colors. Therefore, HAase can be semiquantitatively determined by directly observing the color change of AuNBPs with the naked eye. On the basis of this, the method has a linear detection range of HAase concentrations between 0.6 and 40 U/mL, with a detection limit of 0.3 U/mL. In addition, our designed multicolor biosensor successfully detected the concentration of HAase in human serum samples. The results showed no obvious difference between this method and enzyme-linked immunosorbent assay, indicating the good accuracy and usability of the suggested method.


Assuntos
Benzidinas , Hialuronoglucosaminidase , Nanopartículas Metálicas , Humanos , Hidrogéis , Peróxido de Hidrogênio , Platina
9.
BMC Oral Health ; 24(1): 553, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735954

RESUMO

BACKGROUND: Deep learning, as an artificial intelligence method has been proved to be powerful in analyzing images. The purpose of this study is to construct a deep learning-based model (ToothNet) for the simultaneous detection of dental caries and fissure sealants in intraoral photos. METHODS: A total of 1020 intraoral photos were collected from 762 volunteers. Teeth, caries and sealants were annotated by two endodontists using the LabelMe tool. ToothNet was developed by modifying the YOLOX framework for simultaneous detection of caries and fissure sealants. The area under curve (AUC) in the receiver operating characteristic curve (ROC) and free-response ROC (FROC) curves were used to evaluate model performance in the following aspects: (i) classification accuracy of detecting dental caries and fissure sealants from a photograph (image-level); and (ii) localization accuracy of the locations of predicted dental caries and fissure sealants (tooth-level). The performance of ToothNet and dentist with 1year of experience (1-year dentist) were compared at tooth-level and image-level using Wilcoxon test and DeLong test. RESULTS: At the image level, ToothNet achieved an AUC of 0.925 (95% CI, 0.880-0.958) for caries detection and 0.902 (95% CI, 0.853-0.940) for sealant detection. At the tooth level, with a confidence threshold of 0.5, the sensitivity, precision, and F1-score for caries detection were 0.807, 0.814, and 0.810, respectively. For fissure sealant detection, the values were 0.714, 0.750, and 0.731. Compared with ToothNet, the 1-year dentist had a lower F1 value (0.599, p < 0.0001) and AUC (0.749, p < 0.0001) in caries detection, and a lower F1 value (0.727, p = 0.023) and similar AUC (0.829, p = 0.154) in sealant detection. CONCLUSIONS: The proposed deep learning model achieved multi-task simultaneous detection in intraoral photos and showed good performance in the detection of dental caries and fissure sealants. Compared with 1-year dentist, the model has advantages in caries detection and is equivalent in fissure sealants detection.


Assuntos
Aprendizado Profundo , Cárie Dentária , Selantes de Fossas e Fissuras , Humanos , Cárie Dentária/diagnóstico , Selantes de Fossas e Fissuras/uso terapêutico , Projetos Piloto , Fotografia Dentária/métodos , Adulto , Masculino , Feminino
10.
Breast Cancer Res Treat ; 197(3): 525-533, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36525180

RESUMO

PURPOSE: Breast cancer patients with metabolic syndrome (MetS) and its components show worse treatment responses to chemotherapy. Metformin is a widely used antidiabetic drug which also shows potential anticancer effect. This study aims to evaluate the efficacy, safety, and metabolic parameters change of metformin combined with docetaxel, epirubicin, and cyclophosphamide (TEC) in neoadjuvant treatment (NAT) for breast cancer patients with metabolic abnormality. METHODS: Eligible breast cancer patients were randomized to receive six cycles of TEC (docetaxel 75 mg/m2, epirubicin 75 mg/m2, and cyclophosphamide 500 mg/m2, d1, q3w) or TEC with metformin (TECM, TEC with oral metformin 850 mg once daily for the first cycle, then 850 mg twice daily for the following cycles). The primary end point was total pathological complete response (tpCR, ypTis/0N0) rate. RESULTS: Ninety-two patients were enrolled and randomized from October 2013 to December 2019: 88 patients were available for response and safety assessment. The tpCR rates were 12.5% (5/40) and 14.6% (7/48) in the TEC and TECM groups, respectively (P = 0.777). There was no difference in Ki67 decrease after NAT between two groups (P = 0.456). Toxicity profile were similar between two groups. No grade 3 or higher diarrhea were recorded. Total cholesterol (TC) and high-density lipoprotein cholesterol worsened after NAT in the TEC arm but remained stable in the TECM arm. The absolute increase of TC and low-density lipoprotein cholesterol (LDL-C) was significantly lower in the TECM group compared with the TEC group. After a median follow-up of 40.8 (4.7-70.8) months, no survival difference was observed between TEC and TECM groups (all P > 0.05). CONCLUSION: Adding metformin to TEC didn't increase pCR rate and disease outcome in breast cancer patients with metabolic abnormality. However, additional metformin treatment with chemotherapy would prevent TC and LDL-C increase after NAT. Trial Registration ClinicalTrials.gov Identifier: NCT01929811.


Assuntos
Neoplasias da Mama , Metformina , Humanos , Feminino , Neoplasias da Mama/complicações , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Docetaxel , Epirubicina , Terapia Neoadjuvante/métodos , Metformina/efeitos adversos , LDL-Colesterol/uso terapêutico , Fluoruracila , Receptor ErbB-2/metabolismo , Ciclofosfamida , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Resultado do Tratamento
11.
J Org Chem ; 88(3): 1836-1843, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36696583

RESUMO

A new synthesis of functionalized 2H-pyran-2-ones has been developed through N-heterocyclic carbene-catalyzed formal [3 + 3] annulation of alkynyl esters with enolizable ketones. The key to the success of this protocol relies on the use of an NHC instead of a tertiary amine as the catalyst. This protocol also features a broad substrate scope and mild metal-free conditions, offering simple and rapid access to the target molecules in a highly regioselective manner.

12.
Environ Sci Technol ; 57(4): 1776-1787, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36656265

RESUMO

The biotransformation behavior and toxicity of organophosphate esters (OPEs) in rice and rhizosphere microbiomes were comprehensively studied by hydroponic experiments. OPEs with lower hydrophobicity were liable to be translocated acropetally, and rhizosphere microbiome could reduce the uptake and translocation of OPEs in rice tissues. New metabolites were successfully identified in rice and rhizosphere microbiome, including hydrolysis, hydroxylated, methylated, and glutathione-, glucuronide-, and sulfate-conjugated products. Rhizobacteria and plants could cooperate to form a complex ecological interaction web for OPE elimination. Furthermore, active members of the rhizosphere microbiome during OPE degradation were revealed and the metagenomic analysis indicated that most of these active populations contained OPE-degrading genes. The results of metabolomics analyses for phytotoxicity assessment implied that several key function metabolic pathways of the rice plant were found perturbed by metabolites, such as diphenyl phosphate and monophenyl phosphate. In addition, the involved metabolism mechanisms, such as the carbohydrate metabolism, amino acid metabolism and synthesis, and nucleotide metabolism in Escherichia coli, were significantly altered after exposure to the products mixture of OPEs generated by rhizosphere microbiome. This work for the first time gives a comprehensive understanding of the entire metabolism of OPEs in plants and associated microbiome, and provides support for the ongoing risk assessment of emerging contaminants and, most critically, their transformation products.


Assuntos
Retardadores de Chama , Microbiota , Oryza , Rizosfera , Ésteres/metabolismo , Retardadores de Chama/análise , Organofosfatos , Biotransformação , Fosfatos , Redes e Vias Metabólicas , Monitoramento Ambiental , China
13.
J Biomed Inform ; 143: 104393, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209975

RESUMO

OBJECTIVE: Acute kidney injury (AKI), a common condition on the intensive-care unit (ICU), is characterized by an abrupt decrease in kidney function within a few hours or days, leading to kidney failure or damage. Although AKI is associated with poor outcomes, current guidelines overlook the heterogeneity among patients with this condition. Identification of AKI subphenotypes could enable targeted interventions and a deeper understanding of the injury's pathophysiology. While previous approaches based on unsupervised representation learning have been used to identify AKI subphenotypes, these methods cannot assess time series or disease severity. METHODS: In this study, we developed a data- and outcome-driven deep-learning (DL) approach to identify and analyze AKI subphenotypes with prognostic and therapeutic implications. Specifically, we developed a supervised long short-term memory (LSTM) autoencoder (AE) with the aim of extracting representation from time-series EHR data that were intricately correlated with mortality. Then, subphenotypes were identified via application of K-means. RESULTS: In two publicly available datasets, three distinct clusters were identified, characterized by mortality rates of 11.3%, 17.3%, and 96.2% in one dataset and 4.6%, 12.1%, and 54.6% in the other. Further analysis demonstrated that AKI subphenotypes identified by our proposed approach were statistically significant on several clinical characteristics and outcomes. CONCLUSION: In this study, our proposed approach could successfully cluster the AKI population in ICU settings into 3 distinct subphenotypes. Thus, such approach could potentially improve outcomes of AKI patients in the ICU, with better risk assessment and potentially better personalized treatment.


Assuntos
Injúria Renal Aguda , Aprendizado Profundo , Humanos , Prognóstico , Unidades de Terapia Intensiva , Medição de Risco , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/epidemiologia , Estudos Retrospectivos
14.
Clin Lab ; 69(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37436374

RESUMO

BACKGROUND: The similarity between Crohn's disease (CD) and non-CD, especially with ulcerative colitis (UC) or intestinal tuberculosis (ITB), makes the diagnostic error rate not low. Therefore, there is an urgent need for an efficient, fast, and simple predictive model that can be applied in clinical practice. The purpose of this study is to establish the risk prediction model for CD based on five routine laboratory tests by logistic-regression algorithm, to construct the early warning model for CD and the corresponding visual nomograph, and to provide an accurate and convenient reference for the risk determination and differential diagnosis of CD, in order to assist clinicians to better manage CD and reduce patient suffering. METHODS: Using a retrospective analysis, a total of 310 cases were collected from 2020 to 2022 at The Sixth Affiliated Hospital, Sun Yat-sen University, who were diagnosed by comprehensive clinical diagnosis, including 100 patients with CD, 50 patients with ulcerative colitis (UC), 110 patients with non-inflammatory bowel disease (non-IBD) diseases (65 cases of intestinal tuberculosis, radioactive enterocolitis 39, and colonic diverticulitis 6), and 50 healthy individuals (NC) in the non-CD group. Risk prediction models were established by measuring ESR, Hb, WBC, ALb, and CH levels in hematology. The models were evaluated and visualized using logistic-regression algorithm. RESULTS: 1) ESR, WBC, and WBC/CH ratios in the CD group were higher than those in the non-CD group, while ALb, Hb, CH, WBC/ESR ratio, and Hb/WBC ratio were lower than those in the non-CD group, and the differences were statistically significant (all p < 0.05). 2) CD occurrence had a strong correlation with the WBC/CH ratio, with the correlation coefficient exceeding 0.4; CD occurrence was correlated with other indicators. 3) A risk prediction model containing age, gender, ESR, ALb, Hb, CH, WBC, WBC/CH, WBC/ESR, and Hb/WBC characteristics was constructed using a logistic-regression algorithm. The sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve of the model were 83.0%, 76.2%, 59.0%, 90.5%, and 0.86, respectively. The model based on the corresponding index also had high diagnostic accuracy (AUC = 0.88) for differentiating CD from ITB. Visual nomograph based on the logistic-regression algorithm was also constructed for clinical application reference. CONCLUSIONS: In this study, a CD risk prediction model was established and visualized by five conventional hema-tological indices: ESR, Hb, WBC, ALb, and CH, in addition to a high diagnostic accuracy for the differential diagnosis of CD and ITB.


Assuntos
Colite Ulcerativa , Doença de Crohn , Tuberculose Gastrointestinal , Humanos , Doença de Crohn/diagnóstico , Colite Ulcerativa/diagnóstico , Estudos Retrospectivos , Biomarcadores/análise , Tuberculose Gastrointestinal/diagnóstico , Diagnóstico Diferencial
15.
Proc Natl Acad Sci U S A ; 117(45): 28150-28159, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33077602

RESUMO

Local wild bovids have been determined to be important prey on the northeastern Tibetan Plateau (NETP), where hunting game was a major subsistence strategy until the late Neolithic, when farming lifestyles dominated in the neighboring Loess Plateau. However, the species affiliation and population ecology of these prehistoric wild bovids in the prehistoric NETP remain unknown. Ancient DNA (aDNA) analysis is highly informative in decoding this puzzle. Here, we applied aDNA analysis to fragmented bovid and rhinoceros specimens dating ∼5,200 y B.P. from the Neolithic site of Shannashuzha located in the marginal area of the NETP. Utilizing both whole genomes and mitochondrial DNA, our results demonstrate that the range of the present-day tropical gaur (Bos gaurus) extended as far north as the margins of the NETP during the late Neolithic from ∼29°N to ∼34°N. Furthermore, comparative analysis with zooarchaeological and paleoclimatic evidence indicated that a high summer temperature in the late Neolithic might have facilitated the northward expansion of tropical animals (at least gaur and Sumatran-like rhinoceros) to the NETP. This enriched the diversity of wildlife, thus providing abundant hunting resources for humans and facilitating the exploration of the Tibetan Plateau as one of the last habitats for hunting game in East Asia.


Assuntos
Biodiversidade , Bovinos , DNA Antigo/análise , Genoma/genética , Migração Animal , Animais , Bovinos/classificação , Bovinos/genética , DNA Mitocondrial , História Antiga , Comportamento de Retorno ao Território Vital , Humanos , Perissodáctilos/classificação , Perissodáctilos/genética , Dinâmica Populacional/história , Ruminantes/classificação , Ruminantes/genética , Tibet
16.
J Environ Manage ; 344: 118523, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37393869

RESUMO

Acetamiprid is a potential threat to human health, aquatic life, soil microorganisms and beneficial insects as a recalcitrant pollutant in wastewater treatment plant effluents. In this work, the synthesized α-Fe2O3-pillared bentonite (FPB) was used to degrade acetamiprid in the photo-Fenton process with the assistance of L-cysteine (L-cys) existing in natural aquatic environment. The kinetic constant k of acetamiprid degradation by FPB/L-cys in the photo-Fenton process was far more than that in the Fenton process of FPB/L-cys lacking light and the photo-Fenton process of FPB without L-cys. The positive linear correlation between k and ≡Fe(II) content indicated the synergy of L-cys and visible light accelerated the cycle of Fe(III) to Fe(II) in FPB/L-cys during the degradation of acetamiprid by elevating the visible light response of FPB, and promoting the interfacial electron transfer from the active sites of FPB to hydrogen peroxide and photo-generated electron transfer from conduction band of α-Fe2O3 to the active sites of FPB. The boosting •OH and 1O2 were predominantly responsible for acetamiprid degradation. Acetamiprid could be efficiently degraded into less toxic small molecules in the photo-Fenton process via C-N bond breaking, hydroxylation, demethylation, ketonization, dechlorination, and ring cleavage.


Assuntos
Bentonita , Ferro , Humanos , Ferro/química , Cisteína , Luz , Compostos Ferrosos , Peróxido de Hidrogênio/química , Catálise
17.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677553

RESUMO

The discovery of the first ATP-binding cassette (ABC) transporter, whose overexpression in cancer cells is responsible for exporting anticancer drugs out of tumor cells, initiated enormous efforts to overcome tumor cell multidrug resistance (MDR) by inhibition of ABC-transporter. Because of its many physiological functions, diverse studies have been conducted on the mechanism, function and regulation of this important group of transmembrane transport proteins. In this review, we will focus on the structural aspects of this transporter superfamily. Since the resolution revolution of electron microscope, experimentally solved structures increased rapidly. A summary of the structures available and an overview of recent structure-based studies are provided. More specifically, the artificial intelligence (AI)-based predictions from AlphaFold-2 will be discussed.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Inteligência Artificial , Resistencia a Medicamentos Antineoplásicos , Resistência a Múltiplos Medicamentos , Antineoplásicos/química , Neoplasias/tratamento farmacológico
18.
Small ; 18(21): e2200829, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35344265

RESUMO

Layered MXene films have shown enormous potential for wide applications due to their high electrical conductivity and unique laminated microstructure. However, the intrinsic susceptibility to oxidation and the mechanical fragility of MXene films are the two major bottlenecks that prevent their widespread industrial applications. Here, a facile yet efficient assembly strategy is proposed to address these issues by increasing the alignment and compactness of MXene layers as well as strengthening the interlayer interactions. This method involves the gelation of MXene flakes with a multifunctional inorganic "mortar" polymer (ammonium polyphosphate, APP) followed by quasi-solid-state assembly enabled by a mechanical rolling process, by which the 3D gel network is transformed into 2D freestanding MXene films with unprecedented flake alignment and compactness. Besides, due to the multiple molecular-level interactions (hydrogen bonding, coordination bonding, and electrostatic force) between APP and MXene flakes, the resultant MXene-APP film (MAF) displays high mechanical strength (286.4 ± 20.3 MPa) and excellent electrical conductivity (8012.4 ± 325.6 S cm-1 ), along with remarkable environmental stability. As an application demonstration, MAF exhibits outstanding electromagnetic interference shielding effectiveness with long-term durability, highlighting the great potential of this gelation-assisted assembly strategy in fabricating large-area, high-performance MXene films for diverse real-world applications.

19.
Appl Environ Microbiol ; 88(2): e0165521, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34731046

RESUMO

The type VI secretion system (T6SS) is an important translocation apparatus that is widely employed by Gram-negative bacteria to deliver toxic effectors into eukaryotic and prokaryotic target cells, causing host damage and providing competitive advantages in polymicrobial environments. The genome of Pseudomonas aeruginosa harbors three T6SS clusters (H1-T6SS, H2-T6SS, H3-T6SS). Activities of these systems are tightly regulated by a complicated signaling network which remains largely elusive. In this study, we focused on a previously characterized two-component system FleS/FleR, and performed comparative transcriptome analysis between the PAO1 wild-type strain and its isogenic ΔfleR mutant, which revealed the important role of FleS/FleR in regulating multiple physiological pathways including T6SS. Gene expression and bacterial killing assays showed that the expression and activity of H1-T6SS are repressed in the wild-type strain owing to the high intracellular c-di-GMP content. Further explorations demonstrated that c-di-GMP relies on the transcription factor FleQ to repress H1-T6SS and its synthesis is controlled by a global regulator AmrZ which is induced by the active FleS/FleR. Interestingly, repression of H1-T6SS by FleS/FleR in PAO1 is independent of RetS which is known to regulate H1-T6SS by controlling the central post-transcriptional factor RsmA. Together, our results identified a novel regulator of H1-T6SS and provided detailed mechanisms of this signaling pathway in PAO1. IMPORTANCE Pseudomonas aeruginosa is an opportunistic human pathogen distributed widely in the environment. The genome of this pathogen contains three T6SS clusters which contribute significantly to its virulence. Understanding the complex regulatory network that controls the activity of T6SS is essential for the development of effective therapeutic treatments for P. aeruginosa infections. In this study, transcriptome analysis led to the identification of a novel regulator FleS/FleR which inversely regulates H1-T6SS and H2-T6SS in P. aeruginosa PAO1. We further revealed a detailed FleS/FleR-mediated regulatory pathway of H1-T6SS in PAO1 which involves two additional transcriptional regulators AmrZ and FleQ and the second messenger c-di-GMP, providing important implications to develop novel anti-infective strategies and antimicrobial drugs.


Assuntos
Pseudomonas aeruginosa , Sistemas de Secreção Tipo VI , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Pseudomonas aeruginosa/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Virulência/genética
20.
FASEB J ; 35(1): e21106, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33165997

RESUMO

The protein tyrosine phosphatase SHP2, encoded by PTPN11, is ubiquitously expressed and essential for the development and/or maintenance of multiple tissues and organs. SHP2 is involved in gastrointestinal (GI) epithelium development and homeostasis, but the underlying mechanisms remain elusive. While studying SHP2's role in skeletal development, we made osteoblast-specific SHP2 deficient mice using Osterix (Osx)-Cre as a driver to excise Ptpn11 floxed alleles. Phenotypic characterization of these SHP2 mutants unexpectedly revealed a critical role of SHP2 in GI biology. Mice lacking SHP2 in Osx+ cells developed a fatal GI pathology with dramatic villus hypoplasia. OSTERIX, an OB-specific zinc finger-containing transcription factor is for the first time found to be expressed in GI crypt cells, and SHP2 expression in the crypt Osx+ cells is critical for self-renewal and proliferation. Further, immunostaining revealed the colocalization of OSTERIX with OLFM4 and LGR5, two bona fide GI stem cell markers, at the crypt cells. Furthermore, OSTERIX expression is found to be associated with GI malignancies. Knockdown of SHP2 expression had no apparent influence on the relative numbers of enterocytes, goblet cells or Paneth cells. Given SHP2's key regulatory role in OB differentiation, our studies suggest that OSTERIX and SHP2 are indispensable for gut homeostasis, analogous to SOX9's dual role as a master regulator of cartilage and an important regulator of crypt stem cell biology. Our findings also provide a foundation for new avenues of inquiry into GI stem cell biology and of OSTERIX's therapeutic and diagnostic potential.


Assuntos
Proliferação de Células , Mucosa Intestinal/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Fator de Transcrição Sp7/metabolismo , Células-Tronco , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Camundongos , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 11/deficiência , Fator de Transcrição Sp7/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA