Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.630
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(10): 1661-1675.e16, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35483373

RESUMO

ß-arrestins bind G protein-coupled receptors to terminate G protein signaling and to facilitate other downstream signaling pathways. Using single-molecule fluorescence resonance energy transfer imaging, we show that ß-arrestin is strongly autoinhibited in its basal state. Its engagement with a phosphopeptide mimicking phosphorylated receptor tail efficiently releases the ß-arrestin tail from its N domain to assume distinct conformations. Unexpectedly, we find that ß-arrestin binding to phosphorylated receptor, with a phosphorylation barcode identical to the isolated phosphopeptide, is highly inefficient and that agonist-promoted receptor activation is required for ß-arrestin activation, consistent with the release of a sequestered receptor C tail. These findings, together with focused cellular investigations, reveal that agonism and receptor C-tail release are specific determinants of the rate and efficiency of ß-arrestin activation by phosphorylated receptor. We infer that receptor phosphorylation patterns, in combination with receptor agonism, synergistically establish the strength and specificity with which diverse, downstream ß-arrestin-mediated events are directed.


Assuntos
Fosfopeptídeos , Receptores Acoplados a Proteínas G , Fosfopeptídeos/metabolismo , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo
2.
Mol Cell ; 84(19): 3758-3774.e10, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39127036

RESUMO

N6-methyladenosine (m6A) modification is deemed to be co-transcriptionally installed on pre-mRNAs, thereby influencing various downstream RNA metabolism events. However, the causal relationship between m6A modification and RNA processing is often unclear, resulting in premature or even misleading generalizations on the function of m6A modification. Here, we develop 4sU-coupled m6A-level and isoform-characterization sequencing (4sU-m6A-LAIC-seq) and 4sU-GLORI to quantify the m6A levels for both newly synthesized and steady-state RNAs at transcript and single-base-resolution levels, respectively, which enable dissecting the relationship between m6A modification and alternative RNA polyadenylation. Unexpectedly, our results show that many m6A addition events occur post-transcriptionally, especially on transcripts with high m6A levels. Importantly, we find higher m6A levels on shorter 3' UTR isoforms, which likely result from sequential polyadenylation of longer 3' UTR isoforms with prolonged nuclear dwelling time. Therefore, m6A modification can also take place post-transcriptionally to intimately couple with other key RNA metabolism processes to establish and dynamically regulate epi-transcriptomics in mammalian cells.


Assuntos
Adenosina , Núcleo Celular , Poliadenilação , Processamento Pós-Transcricional do RNA , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Regiões 3' não Traduzidas , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Células HEK293 , Metiltransferases/metabolismo , Metiltransferases/genética , Células HeLa , Animais
3.
Mol Cell ; 83(16): 2884-2895.e7, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37536340

RESUMO

DNA replication ensures the accurate transmission of genetic information during the cell cycle. Histone variant H2A.Z is crucial for early replication origins licensing and activation in which SUV420H1 preferentially recognizes H2A.Z-nucleosome and deposits H4 lysine 20 dimethylation (H4K20me2) on replication origins. Here, we report the cryo-EM structures of SUV420H1 bound to H2A.Z-nucleosome or H2A-nucleosome and demonstrate that SUV420H1 directly interacts with H4 N-terminal tail, the DNA, and the acidic patch in the nucleosome. The H4 (1-24) forms a lasso-shaped structure that stabilizes the SUV420H1-nucleosome complex and precisely projects the H4K20 residue into the SUV420H1 catalytic center. In vitro and in vivo analyses reveal a crucial role of the SUV420H1 KR loop (residues 214-223), which lies close to the H2A.Z-specific residues D97/S98, in H2A.Z-nucleosome preferential recognition. Together, our findings elucidate how SUV420H1 recognizes nucleosomes to ensure site-specific H4K20me2 modification and provide insights into how SUV420H1 preferentially recognizes H2A.Z nucleosome.


Assuntos
Histonas , Nucleossomos , Histonas/metabolismo , Nucleossomos/genética , Metilação , DNA/metabolismo , Replicação do DNA
4.
Immunity ; 50(4): 941-954, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995508

RESUMO

Arterial inflammation is a hallmark of atherosclerosis, and appropriate management of this inflammation represents a major unmet therapeutic need for cardiovascular disease patients. Here, we review the diverse contributions of immune cells to atherosclerosis, the mechanisms of immune cell activation in this context, and the cytokine circuits that underlie disease progression. We discuss the recent application of these insights in the form of immunotherapy to treat cardiovascular disease and highlight how studies on the cardiovascular co-morbidity that arises in autoimmunity might reveal additional roles for cytokines in atherosclerosis. Currently, data point to interleukin-1ß (IL-1ß), tumor necrosis factor (TNF), and IL-17 as cytokines that, at least in some settings, are effective targets to reduce cardiovascular disease progression.


Assuntos
Doenças Cardiovasculares/imunologia , Citocinas/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Doenças Cardiovasculares/tratamento farmacológico , Colesterol/metabolismo , Ensaios Clínicos como Assunto , Citocinas/antagonistas & inibidores , Citocinas/uso terapêutico , Progressão da Doença , Células Espumosas/imunologia , Células Espumosas/metabolismo , Microbioma Gastrointestinal , Humanos , Inflamassomos/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Interleucina-1beta/antagonistas & inibidores , Camundongos Knockout , Modelos Imunológicos , Músculo Liso Vascular/imunologia , Fagócitos/imunologia , Fagócitos/metabolismo , Transdução de Sinais , Suínos , Pesquisa Translacional Biomédica
5.
Nature ; 601(7892): 245-251, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34912119

RESUMO

Pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) in plants enable them to respond to pathogens by activating the production of defence metabolites that orchestrate immune responses1-4. How the production of defence metabolites is promoted by immune receptors and coordinated with broad-spectrum resistance remains elusive. Here we identify the deubiquitinase PICI1 as an immunity hub for PTI and ETI in rice (Oryza sativa). PICI1 deubiquitinates and stabilizes methionine synthetases to activate methionine-mediated immunity principally through biosynthesis of the phytohormone ethylene. PICI1 is targeted for degradation by blast fungal effectors, including AvrPi9, to dampen PTI. Nucleotide-binding domain, leucine-rich-repeat-containing receptors (NLRs) in the plant immune system, such as PigmR, protect PICI1 from effector-mediated degradation to reboot the methionine-ethylene cascade. Natural variation in the PICI1 gene contributes to divergence in basal blast resistance between the rice subspecies indica and japonica. Thus, NLRs govern an arms race with effectors, using a competitive mode that hinges on a critical defence metabolic pathway to synchronize PTI with ETI and ensure broad-spectrum resistance.


Assuntos
Oryza , Doenças das Plantas , Metionina , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Plantas , Transdução de Sinais/genética
6.
Plant Cell ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325717

RESUMO

The potato (Solanum tuberosum) cyst nematode Globodera pallida induces a multinucleate feeding site (syncytium) in potato roots as its sole source of nutrition. Here, we demonstrate that the G. pallida effector RING-H2 finger A1b (RHA1B), which is a functional ubiquitin ligase, interferes with the carbon catabolite repression 4 (CCR4)-negative on TATA-less (NOT) deadenylase-based RNA metabolism machinery that regulates syncytium development in G. pallida-infected potato. Specifically, RHA1B targets the CCR4-associated factor 1 (CAF1) and StNOT10 subunits of the CCR4-NOT complex for proteasome-mediated degradation, leading to upregulation of the cyclin gene StCycA2 involved in syncytium formation. The StCAF1 subunit of CCR4-NOT recruits the RNA binding protein StPUM5 to deadenylate StCycA2 mRNA, resulting in shortened poly-A tails of StCycA2 mRNA and subsequently reduced transcript levels. Knockdown of either subunit (StCAF1 or StNOT10) of the CCR4-NOT complex or StPUM5 in transgenic potato plants resulted in enlarged syncytia and enhanced susceptibility to G. pallida infection, which resembles the phenotypes of StCycA2 overexpression transgenic potato plants. Genetic analyses indicate that transgenic potato plants overexpressing RHA1B exhibit similar phenotypes as transgenic potato plants with knockdown of StNOT10, StCAF1, or StPUM5. Thus, our data suggest that G. pallida utilizes the RHA1B effector to manipulate RNA metabolism in host plants, thereby promoting syncytium development for parasitic success.

7.
Proc Natl Acad Sci U S A ; 121(42): e2412016121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39388275

RESUMO

In this study, we show that the potato (Solanum tuberosum) pattern recognition receptor (PRR) NEMATODE-INDUCED LEUCINE-RICH REPEAT (LRR)-RLK1 (StNILR1) functions as a dual receptor, recognizing both nematode-associated molecular pattern ascaroside #18 (Ascr18) and plant hormone brassinosteroid (BR) to activate two different physiological outputs: pattern-triggered immunity (PTI) and BR response. Ascr18/BR-StNILR1 signaling requires the coreceptor potato BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1 (StBAK1) and perception of either ligand strengthens StNILR1 interaction with StBAK1 in plant cells. Significantly, the parasitically successful potato cyst nematode (Globodera pallida) utilizes the effector RHA1B, which is a functional ubiquitin ligase, to target StNILR1 for ubiquitination-mediated proteasome-dependent degradation, thereby countering Ascr18/BR-StNILR1-mediated PTI in potato and facilitating nematode parasitism. These findings broaden our understanding of PRR specificity and reveal a nematode parasitic mechanism that targets a PTI signaling pathway.


Assuntos
Doenças das Plantas , Imunidade Vegetal , Solanum tuberosum , Animais , Solanum tuberosum/parasitologia , Solanum tuberosum/imunologia , Solanum tuberosum/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/imunologia , Brassinosteroides/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ligantes , Transdução de Sinais , Receptores de Reconhecimento de Padrão/metabolismo , Receptores de Reconhecimento de Padrão/imunologia , Tylenchoidea/fisiologia , Nematoides/metabolismo , Nematoides/imunologia
8.
N Engl J Med ; 388(16): 1451-1464, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37018474

RESUMO

BACKGROUND: Whether vaccination during pregnancy could reduce the burden of respiratory syncytial virus (RSV)-associated lower respiratory tract illness in newborns and infants is uncertain. METHODS: In this phase 3, double-blind trial conducted in 18 countries, we randomly assigned, in a 1:1 ratio, pregnant women at 24 through 36 weeks' gestation to receive a single intramuscular injection of 120 µg of a bivalent RSV prefusion F protein-based (RSVpreF) vaccine or placebo. The two primary efficacy end points were medically attended severe RSV-associated lower respiratory tract illness and medically attended RSV-associated lower respiratory tract illness in infants within 90, 120, 150, and 180 days after birth. A lower boundary of the confidence interval for vaccine efficacy (99.5% confidence interval [CI] at 90 days; 97.58% CI at later intervals) greater than 20% was considered to meet the success criterion for vaccine efficacy with respect to the primary end points. RESULTS: At this prespecified interim analysis, the success criterion for vaccine efficacy was met with respect to one primary end point. Overall, 3682 maternal participants received vaccine and 3676 received placebo; 3570 and 3558 infants, respectively, were evaluated. Medically attended severe lower respiratory tract illness occurred within 90 days after birth in 6 infants of women in the vaccine group and 33 infants of women in the placebo group (vaccine efficacy, 81.8%; 99.5% CI, 40.6 to 96.3); 19 cases and 62 cases, respectively, occurred within 180 days after birth (vaccine efficacy, 69.4%; 97.58% CI, 44.3 to 84.1). Medically attended RSV-associated lower respiratory tract illness occurred within 90 days after birth in 24 infants of women in the vaccine group and 56 infants of women in the placebo group (vaccine efficacy, 57.1%; 99.5% CI, 14.7 to 79.8); these results did not meet the statistical success criterion. No safety signals were detected in maternal participants or in infants and toddlers up to 24 months of age. The incidences of adverse events reported within 1 month after injection or within 1 month after birth were similar in the vaccine group (13.8% of women and 37.1% of infants) and the placebo group (13.1% and 34.5%, respectively). CONCLUSIONS: RSVpreF vaccine administered during pregnancy was effective against medically attended severe RSV-associated lower respiratory tract illness in infants, and no safety concerns were identified. (Funded by Pfizer; MATISSE ClinicalTrials.gov number, NCT04424316.).


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Infecções Respiratórias , Feminino , Humanos , Lactente , Recém-Nascido , Gravidez , Anticorpos Antivirais , Doenças Transmissíveis/terapia , Método Duplo-Cego , Injeções Intramusculares , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinas contra Vírus Sincicial Respiratório/uso terapêutico , Vírus Sinciciais Respiratórios , Resultado do Tratamento , Vacinação/efeitos adversos , Vacinação/métodos , Eficácia de Vacinas , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/efeitos adversos , Vacinas Combinadas/uso terapêutico , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/prevenção & controle
9.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38581423

RESUMO

This special issue focuses on computational model for drug research regarding drug bioactivity prediction, drug-related interaction prediction, modelling for immunotherapy and modelling for treatment of a specific disease, as conveyed by the following six research and four review articles. Notably, these 10 papers described a wide variety of in-depth drug research from the computational perspective and may represent a snapshot of the wide research landscape.

10.
PLoS Pathog ; 20(4): e1012146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38669242

RESUMO

Apoptosis is a critical host antiviral defense mechanism. But many viruses have evolved multiple strategies to manipulate apoptosis and escape host antiviral immune responses. Herpesvirus infection regulated apoptosis; however, the underlying molecular mechanisms have not yet been fully elucidated. Hence, the present study aimed to study the relationship between herpesvirus infection and apoptosis in vitro and in vivo using the pseudorabies virus (PRV) as the model virus. We found that mitochondria-dependent apoptosis was induced by PRV gM, a late protein encoded by PRV UL10, a virulence-related gene involved in enhancing PRV pathogenicity. Mechanistically, gM competitively combines with BCL-XL to disrupt the BCL-XL-BAK complex, resulting in BCL-2-antagonistic killer (BAK) oligomerization and BCL-2-associated X (BAX) activation, which destroys the mitochondrial membrane potential and activates caspase-3/7 to trigger apoptosis. Interestingly, similar apoptotic mechanisms were observed in other herpesviruses (Herpes Simplex Virus-1 [HSV-1], human cytomegalovirus [HCMV], Equine herpesvirus-1 [EHV-1], and varicella-zoster virus [VZV]) driven by PRV gM homologs. Compared with their parental viruses, the pathogenicity of PRV-ΔUL10 or HSV-1-ΔUL10 in mice was reduced with lower apoptosis and viral replication, illustrating that UL10 is a key virulence-related gene in PRV and HSV-1. Consistently, caspase-3 deletion also diminished the replication and pathogenicity of PRV and HSV-1 in vitro and in mice, suggesting that caspase-3-mediated apoptosis is closely related to the replication and pathogenicity of PRV and HSV-1. Overall, our findings firstly reveal the mechanism by which PRV gM and its homologs in several herpesviruses regulate apoptosis to enhance the viral replication and pathogenicity, and the relationship between gM-mediated apoptosis and herpesvirus pathogenicity suggests a promising approach for developing attenuated live vaccines and therapy for herpesvirus-related diseases.


Assuntos
Apoptose , Herpesvirus Suídeo 1 , Mitocôndrias , Pseudorraiva , Proteínas Virais , Animais , Herpesvirus Suídeo 1/patogenicidade , Herpesvirus Suídeo 1/genética , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Pseudorraiva/virologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Herpesviridae/patogenicidade , Herpesviridae/genética , Replicação Viral/fisiologia , Humanos , Camundongos Endogâmicos BALB C , Virulência
11.
PLoS Pathog ; 20(4): e1012136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38620034

RESUMO

African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by the ASF virus (ASFV). ASFV has evolved multiple strategies to escape host antiviral immune responses. Here, we reported that ASFV pB318L, a trans-geranylgeranyl-diphosphate synthase, reduced the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs). Mechanically, pB318L not only interacted with STING to reduce the translocation of STING from the endoplasmic reticulum to the Golgi apparatus but also interacted with IFN receptors to reduce the interaction of IFNAR1/TYK2 and IFNAR2/JAK1. Of note, ASFV with interruption of B318L gene (ASFV-intB318L) infected PAMs produces more IFN-I and ISGs than that in PAMs infected with its parental ASFV HLJ/18 at the late stage of infection. Consistently, the pathogenicity of ASFV-intB318L is attenuated in piglets compared with its parental virus. Taken together, our data reveal that B318L gene may partially affect ASFV pathogenicity by reducing the production of IFN-I and ISGs. This study provides a clue to design antiviral agents or live attenuated vaccines to prevent and control ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Animais , Suínos , Farnesiltranstransferase/metabolismo , Proteínas Virais/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Transdução de Sinais
12.
Plant Cell ; 36(1): 136-157, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37823521

RESUMO

Acetylation is an important posttranslational modification (PTM) that regulates almost all core processes of autophagy in yeast and mammals. However, the role of protein acetylation in plant autophagy and the underlying regulatory mechanisms remain unclear. Here, we show the essential role of the putative acetyltransferase HOOKLESS1 (HLS1) in acetylation of the autophagy-related protein ATG18a, a key autophagy component that regulates autophagosome formation in Arabidopsis (Arabidopsis thaliana). Loss of HLS1 function suppressed starvation-induced autophagy and increased plant susceptibility to nutrient deprivation. We discovered that HLS1 physically interacts with and directly acetylates ATG18a both in vitro and in vivo. In contrast, mutating putative active sites in HLS1 inhibited ATG18a acetylation and suppressed autophagy upon nutrient deprivation. Accordingly, overexpression of ATG18a mutant variants with lower acetylation levels inhibited the binding activity of ATG18a to PtdIns(3)P and autophagosome formation under starvation conditions. Moreover, HLS1-modulated autophagy was uncoupled from its function in hook development. Taken together, these findings shed light on a key regulator of autophagy and further elucidate the importance of PTMs in modulating autophagy in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Processamento de Proteína Pós-Traducional , Nutrientes , Autofagia/genética
13.
Nucleic Acids Res ; 52(D1): D1407-D1417, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37739405

RESUMO

Advances in sequencing and imaging technologies offer a unique opportunity to unravel cell heterogeneity and develop new immunotherapy strategies for cancer research. There is an urgent need for a resource that effectively integrates a vast amount of transcriptomic profiling data to comprehensively explore cancer tissue heterogeneity and the tumor microenvironment. In this context, we developed the Single-cell and Spatially-resolved Cancer Resources (SCAR) database, a combined tumor spatial and single-cell transcriptomic platform, which is freely accessible at http://8.142.154.29/SCAR2023 or http://scaratlas.com. SCAR contains spatial transcriptomic data from 21 tumor tissues and single-cell transcriptomic data from 11 301 352 cells encompassing 395 cancer subtypes and covering a wide variety of tissues, organoids, and cell lines. This resource offers diverse functional modules to address key cancer research questions at multiple levels, including the screening of tumor cell types, metabolic features, cell communication and gene expression patterns within the tumor microenvironment. Moreover, SCAR enables the analysis of biomarker expression patterns and cell developmental trajectories. SCAR also provides a comprehensive analysis of multi-dimensional datasets based on 34 state-of-the-art omics techniques, serving as an essential tool for in-depth mining and understanding of cell heterogeneity and spatial location. The implications of this resource extend to both cancer biology research and cancer immunotherapy development.


Assuntos
Bases de Dados Factuais , Perfilação da Expressão Gênica , Neoplasias , Humanos , Diferenciação Celular , Perfilação da Expressão Gênica/métodos , Neoplasias/genética , Neoplasias/patologia , Transcriptoma , Microambiente Tumoral , Análise de Célula Única
14.
Nucleic Acids Res ; 52(D1): D1193-D1200, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37897359

RESUMO

circRNADisease v2.0 is an enhanced and reliable database that offers experimentally verified relationships between circular RNAs (circRNAs) and various diseases. It is accessible at http://cgga.org.cn/circRNADisease/ or http://cgga.org.cn:9091/circRNADisease/. The database currently includes 6998 circRNA-disease entries across multiple species, representing a remarkable 19.77-fold increase compared to the previous version. This expansion consists of a substantial rise in the number of circRNAs (from 330 to 4246), types of diseases (from 48 to 330) and covered species (from human only to 12 species). Furthermore, a new section has been introduced in the database, which collects information on circRNA-associated factors (genes, proteins and microRNAs), molecular mechanisms (molecular pathways), biological functions (proliferation, migration, invasion, etc.), tumor and/or cell line and/or patient-derived xenograft (PDX) details, and prognostic evidence in diseases. In addition, we identified 7 159 865 relationships between mutations and circRNAs among 30 TCGA cancer types. Due to notable enhancements and extensive data expansions, the circRNADisease 2.0 database has become an invaluable asset for both clinical practice and fundamental research. It enables researchers to develop a more comprehensive understanding of how circRNAs impact complex diseases.


Assuntos
Bases de Dados Genéticas , Neoplasias , RNA Circular , Humanos , Linhagem Celular , Neoplasias/genética
15.
Proc Natl Acad Sci U S A ; 120(13): e2217576120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943878

RESUMO

Diabetes can result in impaired corneal wound healing. Mitochondrial dysfunction plays an important role in diabetic complications. However, the regulation of mitochondria function in the diabetic cornea and its impacts on wound healing remain elusive. The present study aimed to explore the molecular basis for the disturbed mitochondrial metabolism and subsequent wound healing impairment in the diabetic cornea. Seahorse analysis showed that mitochondrial oxidative phosphorylation is a major source of ATP production in human corneal epithelial cells. Live corneal biopsy punches from type 1 and type 2 diabetic mouse models showed impaired mitochondrial functions, correlating with impaired corneal wound healing, compared to nondiabetic controls. To approach the molecular basis for the impaired mitochondrial function, we found that Peroxisome Proliferator-Activated Receptor-α (PPARα) expression was downregulated in diabetic human corneas. Even without diabetes, global PPARα knockout mice and corneal epithelium-specific PPARα conditional knockout mice showed disturbed mitochondrial function and delayed wound healing in the cornea, similar to that in diabetic corneas. In contrast, fenofibrate, a PPARα agonist, ameliorated mitochondrial dysfunction and enhanced wound healing in the corneas of diabetic mice. Similarly, corneal epithelium-specific PPARα transgenic overexpression improved mitochondrial function and enhanced wound healing in the cornea. Furthermore, PPARα agonist ameliorated the mitochondrial dysfunction in primary human corneal epithelial cells exposed to diabetic stressors, which was impeded by siRNA knockdown of PPARα, suggesting a PPARα-dependent mechanism. These findings suggest that downregulation of PPARα plays an important role in the impaired mitochondrial function in the corneal epithelium and delayed corneal wound healing in diabetes.


Assuntos
Diabetes Mellitus Experimental , PPAR alfa , Camundongos , Humanos , Animais , PPAR alfa/genética , PPAR alfa/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Córnea/metabolismo , Cicatrização/fisiologia , Camundongos Knockout , Mitocôndrias/metabolismo
16.
Proc Natl Acad Sci U S A ; 120(43): e2303794120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844230

RESUMO

ß-arrestins are multivalent adaptor proteins that bind active phosphorylated G protein-coupled receptors (GPCRs) to inhibit G protein signaling, mediate receptor internalization, and initiate alternative signaling events. ß-arrestins link agonist-stimulated GPCRs to downstream signaling partners, such as the c-Raf-MEK1-ERK1/2 cascade leading to ERK1/2 activation. ß-arrestins have been thought to transduce signals solely via passive scaffolding by facilitating the assembly of multiprotein signaling complexes. Recently, however, ß-arrestin 1 and 2 were shown to activate two downstream signaling effectors, c-Src and c-Raf, allosterically. Over the last two decades, ERK1/2 have been the most intensely studied signaling proteins scaffolded by ß-arrestins. Here, we demonstrate that ß-arrestins play an active role in allosterically modulating ERK kinase activity in vitro and within intact cells. Specifically, we show that ß-arrestins and their GPCR-mediated active states allosterically enhance ERK2 autophosphorylation and phosphorylation of a downstream ERK2 substrate, and we elucidate the mechanism by which ß-arrestins do so. Furthermore, we find that allosteric stimulation of dually phosphorylated ERK2 by active-state ß-arrestin 2 is more robust than by active-state ß-arrestin 1, highlighting differential capacities of ß-arrestin isoforms to regulate effector signaling pathways downstream of GPCRs. In summary, our study provides strong evidence for a new paradigm in which ß-arrestins function as active "catalytic" scaffolds to allosterically unlock the enzymatic activity of signaling components downstream of GPCR activation.


Assuntos
Arrestinas , Transdução de Sinais , beta-Arrestinas/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Arrestinas/metabolismo , Regulação Alostérica , Transdução de Sinais/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Fosforilação , beta-Arrestina 2/metabolismo
17.
J Biol Chem ; 300(6): 107307, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657868

RESUMO

African swine fever, caused by the African swine fever virus (ASFV), is a viral hemorrhagic disease that affects domestic pigs and wild boars. ASFV infection causes extensive tissue damage, and the associated mechanism is poorly understood. Pyroptosis is characterized by the activation of inflammatory caspases and pore formation in the cellular plasma membrane, resulting in the release of inflammatory cytokines and cell damage. How ASFV infection regulates pyroptosis remains unclear. Here, using siRNA assay and overexpression methods, we report that ASFV infection regulated pyroptosis by cleaving the pyroptosis execution protein gasdermin A (GSDMA). ASFV infection activated caspase-3 and caspase-4, which specifically cleaved GSDMA at D75-P76 and D241-V242 to produce GSDMA into five fragments, including GSDMA-N1-75, GSDMA-N1-241, and GSDMA-N76-241 fragments at the N-terminal end of GSDMA. Only GSDMA-N1-241, which was produced in the late stage of ASFV infection, triggered pyroptosis and inhibited ASFV replication. The fragments, GSDMA-N1-75 and GSDMA-N76-241, lose the ability to induce pyroptosis. Overall ASFV infection differentially regulates pyroptosis by GSDMA in the indicated phase, which may be conducive to its own replication. Our findings reveal a novel molecular mechanism for the regulation of pyroptosis.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Caspase 3 , Caspases Iniciadoras , Piroptose , Vírus da Febre Suína Africana/metabolismo , Animais , Febre Suína Africana/metabolismo , Febre Suína Africana/virologia , Febre Suína Africana/patologia , Suínos , Caspase 3/metabolismo , Caspase 3/genética , Caspases Iniciadoras/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Ligação a Fosfato/metabolismo , Células HEK293 , Replicação Viral
18.
J Virol ; 98(3): e0183423, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38353534

RESUMO

African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by ASF virus (ASFV) infection. At present, there are still no safe and effective drugs and vaccines to prevent ASF. Mining the important proteins encoded by ASFV that affect the virulence and replication of ASFV is the key to developing effective vaccines and drugs. In this study, ASFV pH240R, a capsid protein of ASFV, was found to inhibit the type I interferon (IFN) signaling pathway. Mechanistically, pH240R interacted with IFNAR1 and IFNAR2 to disrupt the interaction of IFNAR1-TYK2 and IFNAR2-JAK1. Additionally, pH240R inhibited the phosphorylation of IFNAR1, TYK2, and JAK1 induced by IFN-α, resulting in the suppression of the nuclear import of STAT1 and STAT2 and the expression of IFN-stimulated genes (ISGs). Consistent with these results, H240R-deficient ASFV (ASFV-∆H240R) infection induced more ISGs in porcine alveolar macrophages compared with its parental ASFV HLJ/18. We also found that pH240R enhanced viral replication via inhibition of ISGs expression. Taken together, our results clarify that pH240R enhances ASFV replication by inhibiting the JAK-STAT signaling pathway, which highlights the possibility of pH240R as a potential drug target.IMPORTANCEThe innate immune response is the host's first line of defense against pathogen infection, which has been reported to affect the replication and virulence of African swine fever virus (ASFV) isolates. Identification of ASFV-encoded proteins that affect the virulence and replication of ASFV is the key step in developing more effective vaccines and drugs. In this study, we found that pH240R interacted with IFNAR1 and IFNAR2 by disrupting the interaction of IFNAR1-TYK2 and IFNAR2-JAK1, resulting in the suppression of the expression of interferon (IFN)-stimulated genes (ISGs). Consistent with these results, H240R-deficient ASFV (ASFV-∆H240R) infection induces more ISGs' expression compared with its parental ASFV HLJ/18. We also found that pH240R enhanced viral replication via inhibition of ISGs' expression. Taken together, our findings showed that pH240R enhances ASFV replication by inhibiting the IFN-JAK-STAT axis, which highlights the possibility of pH240R as a potential drug target.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Animais , Febre Suína Africana/metabolismo , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/metabolismo , Interferon Tipo I/metabolismo , Transdução de Sinais/fisiologia , Suínos , Vacinas/metabolismo , Replicação Viral
19.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37291761

RESUMO

Adverse drug-drug interactions (DDIs) have become an increasingly serious problem in the medical and health system. Recently, the effective application of deep learning and biomedical knowledge graphs (KGs) have improved the DDI prediction performance of computational models. However, the problems of feature redundancy and KG noise also arise, bringing new challenges for researchers. To overcome these challenges, we proposed a Multi-Channel Feature Fusion model for multi-typed DDI prediction (MCFF-MTDDI). Specifically, we first extracted drug chemical structure features, drug pairs' extra label features, and KG features of drugs. Then, these different features were effectively fused by a multi-channel feature fusion module. Finally, multi-typed DDIs were predicted through the fully connected neural network. To our knowledge, we are the first to integrate the extra label information into KG-based multi-typed DDI prediction; besides, we innovatively proposed a novel KG feature learning method and a State Encoder to obtain target drug pairs' KG-based features which contained more abundant and more key drug-related KG information with less noise; furthermore, a Gated Recurrent Unit-based multi-channel feature fusion module was proposed in an innovative way to yield more comprehensive feature information about drug pairs, effectively alleviating the problem of feature redundancy. We experimented with four datasets in the multi-class and the multi-label prediction tasks to comprehensively evaluate the performance of MCFF-MTDDI for predicting interactions of known-known drugs, known-new drugs and new-new drugs. In addition, we further conducted ablation studies and case studies. All the results fully demonstrated the effectiveness of MCFF-MTDDI.


Assuntos
Sistemas de Liberação de Medicamentos , Redes Neurais de Computação , Humanos , Interações Medicamentosas , Pesquisadores
20.
PLoS Pathog ; 19(9): e1011620, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37656756

RESUMO

LGP2 is a RIG-I-like receptor (RLR) known to bind and recognize the intermediate double-stranded RNA (dsRNA) during virus infection and to induce type-I interferon (IFN)-related antiviral innate immune responses. Here, we find that LGP2 inhibits Zika virus (ZIKV) and tick-borne encephalitis virus (TBEV) replication independent of IFN induction. Co-immunoprecipitation (Co-IP) and confocal immunofluorescence data suggest that LGP2 likely colocalizes with the replication complex (RC) of ZIKV by interacting with viral RNA-dependent RNA polymerase (RdRP) NS5. We further verify that the regulatory domain (RD) of LGP2 directly interacts with RdRP of NS5 by biolayer interferometry assay. Data from in vitro RdRP assays indicate that LGP2 may inhibit polymerase activities of NS5 at pre-elongation but not elongation stages, while an RNA-binding-defective LGP2 mutant can still inhibit RdRP activities and virus replication. Taken together, our work suggests that LGP2 can inhibit flavivirus replication through direct interaction with NS5 protein and downregulates its polymerase pre-elongation activities, demonstrating a distinct role of LGP2 beyond its function in innate immune responses.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Infecção por Zika virus , Zika virus , Humanos , RNA Polimerase Dependente de RNA/genética , Nucleotidiltransferases , RNA de Cadeia Dupla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA