Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Blood Cells Mol Dis ; 107: 102855, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703475

RESUMO

BACKGROUND: Circular RNAs (circRNA) are pivotal in hematological diseases. Previous study showed that circ_0014614 (circDAP3) was significantly underexpressed in bone marrow-derived exosomes from essential thrombocythemia (ET) patients, affecting the differentiation of bone marrow lineage cells into megakaryocytes. METHODS: Fluorescence in situ hybridization (FISH) was used to display circ_0014614's primary cytoplasmic location in K562 cells. Cytoscape software was used to predict the circRNA-miRNA-mRNA networks, and their expression at the cellular level was detected by Quantitative reverse transcription-polymerase chain reaction (qRT-PCR). qRT-PCR was utilized to detect the expression levels of circ_0014614,miR-138-5p and caspase3 mRNA. Western blot was used to determine the protein levels of GATA-1, RUNX-1, NF-E2, CD41 and caspase3. The proliferation of K562 cells was assessed using the Cell Counting Kit-8 (CCK-8) Assay. Furthermore, the interplay between miR-138-5p and circ_0014614 or caspase3 was elucidated through a Dual-luciferase reporter assay. RESULTS: FISH assay indicated circ_0014614's primary cytoplasmic location in K562 cells. In ET bone marrow and K562 cells, circ_0014614 and caspase3 were down-regulated, whereas miR-138-5p saw a significant surge. Overexpressing circ_0014614 curtailed K562 cells' proliferation and differentiation. Further, circ_0014614 targeted miR-138-5p, with heightened miR-138-5p levels counteracting circ_0014614's inhibition. MiR-138-5p further targeted caspase3, and caspase3 silencing neutralized suppressed miR-138-5p's effects on K562 cell differentiation. CONCLUSION: Circ_0014614 was down-regulated in ET bone marrow and bone marrow lineage cells, and upregulating circ_0014614 can inhibit bone marrow lineage cells' proliferation and differentiation into megakaryocytes. Mechanistically, circ_0014614 functioned as ceRNA via sponging miR-138-5p and alleviated the inhibitory effect of miR-138-5p on its target caspase3, which potentially deters tumor activity in ET.


Assuntos
Caspase 3 , Diferenciação Celular , Megacariócitos , MicroRNAs , RNA Circular , Trombocitemia Essencial , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Megacariócitos/metabolismo , Megacariócitos/patologia , RNA Circular/genética , Caspase 3/metabolismo , Trombocitemia Essencial/genética , Trombocitemia Essencial/patologia , Trombocitemia Essencial/metabolismo , Células K562 , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Feminino , Masculino , Pessoa de Meia-Idade
2.
Lupus ; 33(6): 608-614, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518059

RESUMO

OBJECTIVE: The objective of this study is to provide a description of a group of retrospective cohort outcomes in patients with systemic lupus erythematosus (SLE) complicated with immune thrombocytopenia (ITP) receiving belimumab. METHODS: This study reports on the treatment of 10 female patients (mean age 34.3 ± 14.0 years, mean weight 58.7 ± 18.2 kg) with both SLE and ITP who received belimumab in addition to basic drug therapy. The belimumab treatment regimen consisted of a dosage of 10 mg/kg, with an initial infusion every 2 weeks for the first 3 doses, followed by an infusion every 4 weeks. RESULTS: Ten patients were included in the study. The overall response rate of thrombocytopenia was 90% after treatment. The parameters such as platelet count, lymphocyte count, erythrocyte count, hemoglobin, dsDNA, C3, and C4 were significantly improved (p < .05). The SLE Disease Activity Index (SLEDAI), British Islet lupus Assessment Group 2004 (BILAG-2004), and Physician Global assessment (PGA) scores were significantly decreased (p < .05). There were no significant differences in glutamic pyruvic transaminase (ALT), glutamic oxaloacetic transaminase (AST), and serum creatinine (Scr) before and after treatment (p > .05). CONCLUSION: Belimumab shows promising clinical outcomes in the treatment on patients with both SLE and ITP. Further studies are needed to validate these findings in larger patient populations and compare the efficacy of belimumab with other treatments for SLE complicated with ITP. Long-term response rates and adverse events associated with belimumab treatment also warrant further investigation.


Assuntos
Anticorpos Monoclonais Humanizados , Lúpus Eritematoso Sistêmico , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Humanos , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Estudos Retrospectivos , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Resultado do Tratamento , Trombocitopenia/tratamento farmacológico , Imunossupressores/efeitos adversos , Índice de Gravidade de Doença
3.
Mol Biol Rep ; 51(1): 553, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642158

RESUMO

BACKGROUND: The metastasis accounts for most deaths from breast cancer (BRCA). Understanding the molecular mechanisms of BRCA metastasis is urgently demanded. Flap Endonuclease 1 (FEN1), a pivotal factor in DNA metabolic pathways, contributes to tumor growth and drug resistance, however, little is known about the role of FEN1 in BRCA metastasis. METHODS AND RESULTS: In this study, FEN1 expression and its clinical correlation in BRCA were investigated using bioinformatics, showing being upregulated in BRCA samples and significant relationships with tumor stage, node metastasis, and prognosis. Immunohistochemistry (IHC) staining of local BRCA cohort indicated that the ratio of high FEN1 expression in metastatic BRCA tissues rose over that in non-metastatic tissues. The assays of loss-of-function and gain-of-function showed that FEN1 enhanced BRCA cell proliferation, migration, invasion, xenograft growth as well as lung metastasis. It was further found that FEN1 promoted the aggressive behaviors of BRCA cells via Signal Transducer and Activator of Transcription 3 (STAT3) activation. Specifically, the STAT3 inhibitor Stattic thwarted the FEN1-induced enhancement of migration and invasion, while the activator IL-6 rescued the decreased migration and invasion caused by FEN1 knockdown. Additionally, overexpression of FEN1 rescued the inhibitory effect of nuclear factor-κB (NF-κB) inhibitor BAY117082 on phosphorylated STAT3. Simultaneously, the knockdown of FEN1 attenuated the phosphorylation of STAT3 promoted by the NF-κB activator tumor necrosis factor α (TNF-α). CONCLUSIONS: These results indicate a novel mechanism that NF-κB-driven FEN1 contributes to promoting BRCA growth and metastasis by STAT3 activation.


Assuntos
Neoplasias da Mama , Endonucleases Flap , Fator de Transcrição STAT3 , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Animais , Camundongos
4.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791374

RESUMO

Cryptococcus neoformans (C. neoformans) is a pathogenic fungus that can cause life-threatening meningitis, particularly in individuals with compromised immune systems. The current standard treatment involves the combination of amphotericin B and azole drugs, but this regimen often leads to inevitable toxicity in patients. Therefore, there is an urgent need to develop new antifungal drugs with improved safety profiles. We screened antimicrobial peptides from the hemolymph transcriptome of Blaps rhynchopetera (B. rhynchopetera), a folk Chinese medicine. We found an antimicrobial peptide named blap-6 that exhibited potent activity against bacteria and fungi. Blap-6 is composed of 17 amino acids (KRCRFRIYRWGFPRRRF), and it has excellent antifungal activity against C. neoformans, with a minimum inhibitory concentration (MIC) of 0.81 µM. Blap-6 exhibits strong antifungal kinetic characteristics. Mechanistic studies revealed that blap-6 exerts its antifungal activity by penetrating and disrupting the integrity of the fungal cell membrane. In addition to its direct antifungal effect, blap-6 showed strong biofilm inhibition and scavenging activity. Notably, the peptide exhibited low hemolytic and cytotoxicity to human cells and may be a potential candidate antimicrobial drug for fungal infection caused by C. neoformans.


Assuntos
Antifúngicos , Peptídeos Antimicrobianos , Besouros , Cryptococcus neoformans , Testes de Sensibilidade Microbiana , Cryptococcus neoformans/efeitos dos fármacos , Animais , Antifúngicos/farmacologia , Antifúngicos/química , Besouros/microbiologia , Besouros/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Humanos , Biofilmes/efeitos dos fármacos , Sequência de Aminoácidos
5.
Opt Express ; 31(26): 44798-44810, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178539

RESUMO

Optical multicasting, which involves delivering an input signal to multiple different channels simultaneously, is a key function to improve network performance. By exploiting individual spatial modes as independent channels, mode-division-multiplexing (MDM) can solve the capacity crunch of traditional standard single-mode fiber (SSMF) transmission system. In order to realize mode multicasting with high flexibility in future hybrid wavelength-division-multiplexing (WDM) and MDM networks, we propose a mode multicasting scheme without parasitic wavelength conversion, based on the inter-modal four-wave mixing (FWM) arising in the few-mode fiber (FMF). The operation mechanism including nonlinear phase shift for efficient mode multicasting is analytically identified. Then, based on the derived operation condition, we numerically investigate the impact of the dual-pump power and the FMF length on the performance of mode multicasting. By properly setting the pump wavelength and the dual-pump power, mode multicasting performance, in terms of mode multicasting efficiency, 3-dB bandwidth, and destination wavelength, can be tuned according to various application scenarios. After the performance optimization, mode multicasting of 25-Gbaud and 100-Gbaud 16-quadratic-amplitude modulation (16-QAM) signals is numerically demonstrated. The proposed reconfigurable mode multicasting is promising for future WDM-MDM networks.

6.
J Digit Imaging ; 36(6): 2554-2566, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37578576

RESUMO

This study aimed to explore the magnetic resonance imaging (MRI) features of dual-phenotype hepatocellular carcinoma (DPHCC) and their diagnostic value.The data of 208 patients with primary liver cancer were retrospectively analysed between January 2016 and June 2021. Based on the pathological diagnostic criteria, 27 patients were classified into the DPHCC group, 113 patients into the noncholangiocyte-phenotype hepatocellular carcinoma (NCPHCC) group, and 68 patients with intrahepatic cholangiocarcinoma (ICC) were classified into the ICC group. Two abdominal radiologists reviewed the preoperative MRI features by a double-blind method. The MRI features and key laboratory and clinical indicators were compared between the groups. The potentially valuable MRI features and key laboratory and clinical characteristics for predicting DPHCC were identified by univariate and multivariate analyses, and the odds ratios (ORs) were recorded. In multivariate analysis, tumour without capsule (P = 0.046, OR = 9.777), dynamic persistent enhancement (P = 0.006, OR = 46.941), and targetoid appearance on diffusion-weighted imaging (DWI) (P = 0.021, OR = 30.566) were independently significant factors in the detection of DPHCC compared to NCPHCC. Serum alpha-fetoprotein (AFP) > 20 µg/L (P = 0.036, OR = 67.097) and prevalence of hepatitis B virus (HBV) infection (P = 0.020, OR = 153.633) were independent significant factors in predicting DPHCC compared to ICC. The differences in other tumour marker levels and imaging features between the groups were not significant. In MR enhanced and diffusion imaging, tumour without capsule, persistent enhancement and DWI targetoid findings, combined with AFP > 20 µg/L and HBV infection-positive laboratory results, can help to diagnose DPHCC and differentiate it from NCPHCC and ICC. These results suggest that clinical, laboratory and MRI features should be integrated to construct an AI diagnostic model for DPHCC.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , alfa-Fetoproteínas , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Colangiocarcinoma/patologia , Colangiocarcinoma/cirurgia , Meios de Contraste , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Imageamento por Ressonância Magnética/métodos , Fenótipo , Estudos Retrospectivos , Método Duplo-Cego
7.
Cancer Cell Int ; 20(1): 569, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33292221

RESUMO

BACKGROUND: Expression of the long non-coding mRNA LINC00152 has been reported to correlate with cancer cell resistance to oxaliplatin (L-OHP). However, little is known regarding the molecular mechanism of LINC00152 in esophageal cancer (EC). Hence, we intended to characterize the role of LINC00152 in EC, with a special focus on epithelial-mesenchymal transition (EMT) and L-OHP resistance. METHODS: We collected EC tissues and identified EC cell lines with higher L-OHP resistance, and then characterized expression patterns of LINC00152, Zeste Homologue 2 (EZH2), Zinc finger e-box binding homeobox (ZEB1) and EMT-related genes using RT-qPCR and Western blot analysis. Furthermore, their functional significance was identified by gain and loss-of-function experiments. The relationship among LINC00152, EZH2 and ZEB1 was examined using RIP, RNA pull-down and ChIP assays. Additionally, resistance of EC cells to L-OHP was reflected by CCK-8 assay to detect cell viability. Animal experiments were also conducted to detect the effects of the LINC00152/EZH2/ZEB1 on EMT and L-OHP resistance. RESULTS: LINC00152, EZH2 and ZEB1 were highly expressed in EC tissues and Kyse-150/TE-1 cells. As revealed by assays in vitro and in vivo, LINC00152 positively regulated ZEB1 expression through interaction with EZH2 to enhance EMT and L-OHP resistance in EC cells. In contrast, silencing of LINC00152 contributed to attenuated EMT and drug resistance of EC cells to L-OHP. CONCLUSIONS: Our study demonstrates that LINC00152/EZH2/ZEB1 axis can regulate EMT and resistance of EC cells to L-OHP, thus presenting a potential therapeutic target for EC treatment.

8.
Mol Pharmacol ; 93(4): 368-375, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29436491

RESUMO

Angiogenesis in atherosclerotic plaque promotes plaque growth, causes plaque hemorrhage, and violates plaque stability. LINC00657 is a long noncoding RNA highly conserved and abundantly expressed in vascular endothelial cells. The present study was designed to investigate the effects and mechanisms of LINC00675 on low concentrations of oxidized low-density lipoprotein (oxLDL)-induced angiogenesis. Cell proliferation, transwell, wound healing, and tube formation assays were conducted to detect the effects of low concentrations of oxLDL on angiogenesis; the results discovered that oxLDL promoted cell proliferation, migration, and tube formation. oxLDL also upregulated LINC00657 expression. Inhibition of LINC00657 by siRNA significantly suppressed oxLDL-induced endothelial cell proliferation, migration, and tube formation. Bioinformatic assay indicated six binding sites in the LINC00657 sequence to miR-590-3p. The upregulation of LINC00657 was related to the downregulation of miR-590-3p in oxLDL-treated endothelial cells; while downregulation of LINC00657 resulted in upregulation of miR-590-3p. The antiangiogenesis effects of si-LINC00657 were partly abrogated by miR-590-3p inhibitor. Further dual-luciferase assay found miR-590-3p inhibited the expression of hypoxia-inducible factor 1α (HIF-1α) by binding to the position of 689-696 in HIF-1α 3'-untranslated region directly. MiR-590-3p also inhibited the oxLDL-induced upregulation of HIF-1α, vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9). These results suggested that in oxLDL-treated endothelial cells, LINC00657 acted as a miR-590-3p sponge to attenuate the suppression of miR-590-3p on HIF-1α, and to promote angiogenesis through VEGF, MMP-2, and MMP-9. The present study provided new insight into the roles of LINC00657 and miR-590-3p in preventing oxLDL-induced angiogenesis and may provide a novel strategy for atherosclerosis treatment.


Assuntos
Indutores da Angiogênese/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Lipoproteínas LDL/farmacologia , MicroRNAs/biossíntese , RNA Longo não Codificante/biossíntese , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , MicroRNAs/genética , Oxirredução/efeitos dos fármacos , RNA Longo não Codificante/genética
9.
J Cardiovasc Pharmacol ; 66(2): 148-58, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25915512

RESUMO

We have recently shown that DJ-1 is implicated in the delayed cardioprotective effect of hypoxic preconditioning (HPC) against hypoxia/reoxygenation (H/R) injury as an endogenous protective protein. This study aims to further investigate the underlying mechanism by which DJ-1 mediates the delayed cardioprotection of HPC against H/R-induced oxidative stress. Using a well-characterized cellular model of HPC from rat heart-derived H9c2 cells, we found that HPC promoted nuclear factor erythroid 2-related factor 2 (Nrf2) and its cytoplasmic inhibitor Kelch-like ECH-associated protein-1 (Keap1) dissociation and resulted in increased nuclear translocation, antioxidant response element-binding, and transcriptional activity of Nrf2 24 hours after HPC, with subsequent upregulation of manganese superoxide dismutase (MnSOD) and heme oxygenase-1 (HO-1), which provided delayed protection against H/R-induced oxidative stress in normal H9c2 cells. However, the aforementioned effects of HPC were abolished in DJ-1-knockdown H9c2 cells, which were restored by restoration of DJ-1 expression. Importantly, we showed that inhibition of the Nrf2 pathway in H9c2 cells mimicked the effects of DJ-1 knockdown and abolished HPC-derived induction of antioxidative enzymes (MnSOD and HO-1) and the delayed cardioprotection. In addition, inhibition of Nrf2 also reversed the effects of restored DJ-1 expression on induction of antioxidative enzymes and delayed cardioprotection by HPC in DJ-1-knockdown H9c2 cells. Taken together, this work revealed that activation of Nrf2 pathway and subsequent upregulation of antioxidative enzymes could be a critical mechanism by which DJ-1 mediates the delayed cardioprotection of HPC against H/R-induced oxidative stress in H9c2 cells.


Assuntos
Antioxidantes/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Regulação para Cima/fisiologia , Animais , Hipóxia Celular/fisiologia , Linhagem Celular , Técnicas de Silenciamento de Genes/métodos , Humanos , Precondicionamento Isquêmico Miocárdico/métodos , Proteína Desglicase DJ-1 , Ratos , Transdução de Sinais/fisiologia
10.
Mol Cell Biochem ; 385(1-2): 33-41, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24048861

RESUMO

It has been well demonstrated that hypoxic preconditioning (HPC) can attenuate hypoxia/reoxygenation (H/R)-induced oxidant stress and elicit delayed cardioprotection by upregulating the expression of multiple antioxidative enzymes such as heme oxygenase-1 (HO-1), manganese superoxide dismutase (MnSOD) and so on. However, the underlying mechanisms of HPC-induced upregulation of antioxidative enzymes are not fully understood. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential transcription factor that regulates expression of several antioxidant genes via binding to the antioxidant response element (ARE) and plays a crucial role in cellular defence against oxidative stress. Here, we wondered whether activation of the Nrf2-ARE pathway is responsible for the induction of antioxidative enzymes by HPC and contributes to the delayed cardioprotection of HPC. Cellular model of HPC from rat heart-derived H9c2 cells was induced 24 h prior to H/R. The results showed that HPC efficiently attenuated H/R-induced viability loss and lactate dehydrogenase leakage. In addition, HPC increased nuclear translocation and ARE binding of Nrf2 during the late phase, upregulated the expression of antioxidative enzymes (HO-1 and MnSOD), inhibited H/R-induced oxidant stress. However, when Nrf2 was specifically knocked down by siRNA, the induction of antioxidative enzymes by HPC was completely abolished and, as a result, the inhibitory effect of HPC on H/R-induced oxidant stress was reversed, and the delayed cardioprotection induced by HPC was also abolished. These results suggest that HPC upregulates antioxidative enzymes through activating the Nrf2-ARE pathway and confers delayed cardioprotection against H/R-induced oxidative stress.


Assuntos
Antioxidantes/metabolismo , Cardiotônicos/metabolismo , Precondicionamento Isquêmico Miocárdico , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Regulação para Cima , Animais , Elementos de Resposta Antioxidante/genética , Hipóxia Celular , Linhagem Celular , Núcleo Celular/metabolismo , Técnicas de Silenciamento de Genes , Ligação Proteica , Transporte Proteico , Ratos , Transdução de Sinais , Estresse Fisiológico
11.
Water Res ; 255: 121491, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38520779

RESUMO

Pre-capturing organics in municipal wastewater for biogas production, combined with Anammox-based nitrogen removal process, improves the sustainability of sewage treatment. Thus, enhancing nitrogen removal via Anammox in mainstream wastewater treatment becomes very crucial. In present study, a three-stage anoxic/oxic (AO) biofilm process with intermittent aeration was designed to strengthen partial nitrification/denitrification coupling Anammox (PNA/PDA) in treatment of low C/N wastewater, which contained chemical oxygen demand (COD) of 79.8 mg/L and total inorganic nitrogen (TIN) of 58.9 mg/L. With a hydraulic retention time of 8.0 h, the process successfully reduced TIN to 10.6 mg/L, achieving a nitrogen removal efficiency of 83.3 %. The 1st anoxic zone accounted for 32.0 % TIN removal, with 10.3 % by denitrification and 21.7 % by PDA, meanwhile, the 2nd and 3rd anoxic zones contributed 19.4 % and 4.5 % of TIN removal, primarily achieved through PDA (including endogenous PD coupling Anammox). The 1st and 2nd intermittent zones accounted for 27.2 % and 17.0 % of TIN removal, respectively, with 13.7 %-21.3 % by PNA and 3.2 %-5.3 % by PDA. Although this process did not pursue nitrite accumulation in any zone (< 1.5 mg-N/L), PNA and PDA accounted for 35.1 % and 52.1 % of TIN removal, respectively. Only 0.21 % of removed TIN was released as nitrous oxide. The AnAOB of Candidatus Brocadia was enriched in each zone, with a relative abundance of 0.66 %-2.29 %. In intermittent zones, NOB had been partially suppressed (AOB/NOB = 0.73-0.88), mainly due to intermittent aeration and effective nitrite utilization by AnAOB since its population size was much greater than NOB. Present study indicated that the three-stage AO biofilm process with intermittent aeration could enhance nitrogen removal via PNA and PDA with a low N2O emission factor.

12.
Discov Oncol ; 15(1): 137, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684596

RESUMO

BACKGROUND: The S100 protein family is a group of small molecular EF-hand calcium-binding proteins that play critical roles in various biological processes, including promotion of growth, metastasis and immune evasion of tumor. However, the potential roles of S100 protein family expression in tumor microenvironment (TME) cell infiltration in pan-cancer remain elusive. METHODS: Herein, we conducted a comprehensive assessment of the expression patterns of the S100 protein family in pan-cancer, meticulously examining their correlation with characteristics of TME cell infiltration. The S100 score was constructed to quantify S100 family expression patterns of individual tumors. RESULTS: The S100 family was a potent risk factor in many cancers. Clustering analysis based on the transcriptome patterns of S100 protein family identified two cancer clusters with distinct immunophenotypes and clinical characteristics. Cluster A, with lower S100 expression, exhibited lower immune infiltration, whereas, Cluster B, with higher S100 expression, featured higher immune infiltration. Interestingly, Cluster B had a poorer prognosis, likely due to an immune-excluded phenotype resulting from stromal activation. The analysis revealed robust enrichment of the TGFb and EMT pathways in the cohort exhibiting high S100 score, alongside a positive correlation between the S100 score and Treg levels, suggesting the manifestation of an immune-excluded phenotype in this group. Moreover, S100 families were associated with the prognosis of 22 different cancers and a noteworthy association was observed between high S100 score and an unfavorable response to anti-PD-1/L1 immunotherapy. Consistent findings across two independent immunotherapy cohorts substantiated the advantageous therapeutic outcomes and clinical benefits in patients displaying lower S100score. CONCLUSION: Our analysis demonstrated the role of S100 family in formation of TME diversity and complexity, enabling deeper cognition of TME infiltration characterization and the development of personalized immunotherapy strategies targeting S100 family for unique tumor types.

13.
Zhen Ci Yan Jiu ; 49(4): 409-414, 2024 Apr 25.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38649210

RESUMO

Hypertension is a global problem threatening human health and life. Although there are many antihypertensive drugs, the low compliance of medication affects its efficacy, and the effect in regulating hypertension has become increasingly prominent. Focusing on the new trend of proactive healthcare management, in the present paper, we made a summary about the status and existing problems of transcutaneous electrical acupoint stimulation (TEAS) in the regulation of blood pressure, and put forward some suggestions, such as selecting acupoints based on classical acupuncture theory to highlight the advantages of TEAS to control blood pressure as a whole, optimizing and screening the parameters of TEAS in the regulation of blood pressure, expanding the research observation indexes etc. We also made a prospect about its future application, hoping to provide new ideas for the proactive regulation, whole-process regulation and integrated regulation of blood pressure.


Assuntos
Pontos de Acupuntura , Pressão Sanguínea , Hipertensão , Estimulação Elétrica Nervosa Transcutânea , Humanos , Hipertensão/terapia , Hipertensão/fisiopatologia
14.
Research (Wash D C) ; 7: 0301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38274126

RESUMO

Cross-talks (e.g., host-driven iron withdrawal and microbial iron uptake between host gastrointestinal tract and commensal microbes) regulate immunotolerance and intestinal homeostasis. However, underlying mechanisms that regulate the cross-talks remain poorly understood. Here, we show that bacterial products up-regulate iron-transporter transferrin and transferrin acts as an immunosuppressor by interacting with cluster of differentiation 14 (CD14) to inhibit pattern recognition receptor (PRR) signaling and induce host immunotolerance. Decreased intestinal transferrin is found in germ-free mice and human patients with ulcerative colitis, which are characterized by impaired intestinal immunotolerance. Intestinal transferrin and host immunotolerance are returned to normal when germ-free mice get normal microbial commensalism, suggesting an association between microbial commensalism, transferrin, and host immunotolerance. Mouse colitis models show that transferrin shortage impairs host's tolerogenic responses, while its supplementation promotes immunotolerance. Designed peptide blocking transferrin-CD14 interaction inhibits immunosuppressive effects of transferrin. In monkeys with idiopathic chronic diarrhea, transferrin shows comparable or even better therapeutic effects than hydrocortisone. Our findings reveal that by up-regulating host transferrin to silence PRR signaling, commensal bacteria counteract immune activation induced by themselves to shape host immunity and contribute for intestinal tolerance.

15.
Virol Sin ; 39(2): 309-318, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458399

RESUMO

SARS-CoV-2 infection-induced hyper-inflammation is a key pathogenic factor of COVID-19. Our research, along with others', has demonstrated that mast cells (MCs) play a vital role in the initiation of hyper-inflammation caused by SARS-CoV-2. In previous study, we observed that SARS-CoV-2 infection induced the accumulation of MCs in the peri-bronchus and bronchioalveolar-duct junction in humanized mice. Additionally, we found that MC degranulation triggered by the spike protein resulted in inflammation in alveolar epithelial cells and capillary endothelial cells, leading to subsequent lung injury. The trachea and bronchus are the routes for SARS-CoV-2 transmission after virus inhalation, and inflammation in these regions could promote viral spread. MCs are widely distributed throughout the respiratory tract. Thus, in this study, we investigated the role of MCs and their degranulation in the development of inflammation in tracheal-bronchial epithelium. Histological analyses showed the accumulation and degranulation of MCs in the peri-trachea of humanized mice infected with SARS-CoV-2. MC degranulation caused lesions in trachea, and the formation of papillary hyperplasia was observed. Through transcriptome analysis in bronchial epithelial cells, we found that MC degranulation significantly altered multiple cellular signaling, particularly, leading to upregulated immune responses and inflammation. The administration of ebastine or loratadine effectively suppressed the induction of inflammatory factors in bronchial epithelial cells and alleviated tracheal injury in mice. Taken together, our findings confirm the essential role of MC degranulation in SARS-CoV-2-induced hyper-inflammation and the subsequent tissue lesions. Furthermore, our results support the use of ebastine or loratadine to inhibit SARS-CoV-2-triggered degranulation, thereby preventing tissue damage caused by hyper-inflammation.


Assuntos
Brônquios , COVID-19 , Degranulação Celular , Mastócitos , SARS-CoV-2 , Traqueia , Animais , Mastócitos/virologia , Mastócitos/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/patologia , Camundongos , Traqueia/virologia , Traqueia/patologia , Brônquios/virologia , Brônquios/patologia , Humanos , Inflamação/virologia , Células Epiteliais/virologia , Modelos Animais de Doenças
16.
J Colloid Interface Sci ; 662: 941-952, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382377

RESUMO

Carbon capture and desulfurization of flue gases are crucial for the achievement of carbon neutrality and sustainable development. In this work, the "one-step" adsorption technology with high-performance metal-organic frameworks (MOFs) was proposed to simultaneously capture the SO2 and CO2. Four machine learning algorithms were used to predict the performance indicators (NCO2+SO2, SCO2+SO2/N2, and TSN) of MOFs, with Multi-Layer Perceptron Regression (MLPR) showing better performance (R2 = 0.93). To address sparse data of MOF chemical descriptors, we introduced the Deep Factorization Machines (DeepFM) model, outperforming MLPR with a higher R2 of 0.95. Then, sensitivity analysis was employed to find that the adsorption heat and porosity were the key factors for SO2 and CO2 capture performance of MOF, while the influence of open alkali metal sites also stood out. Furthermore, we established a kinetic model to batch simulate the breakthrough curves of TOP 1000 MOFs to investigate their dynamic adsorption separation performance for SO2/CO2/N2. The TOP 20 MOFs screened by the dynamic performance highly overlap with those screened by the static performance, with 76 % containing open alkali metal sites. This integrated approach of computational screening, machine learning, and dynamic analysis significantly advances the development of efficient MOF adsorbents for flue gas treatment.

17.
Endocr Connect ; 13(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552311

RESUMO

Objective: Hashimoto's thyroiditis is an inflammatory disease, and research suggests that a low-carbohydrate diet may have potential anti-inflammatory effects. This study aims to utilize Dixon-T2-weighted imaging (WI) sequence for a semi-quantitative assessment of the impact of a low-carbohydrate diet on the degree of thyroid inflammation in patients with Hashimoto's thyroiditis. Methods: Forty patients with Hashimoto's thyroiditis were recruited for this study and randomly divided into two groups: one with a normal diet and the other with a low-carbohydrate diet. Antibodies against thyroid peroxidase (TPOAb) and thyroglobulin (TgAb) were measured for all participants. Additionally, thyroid water content was semi-quantitatively measured using Dixon-T2WI. The same tests and measurements were repeated for all participants after 6 months. Results: After 6 months of a low-carbohydrate diet, patients with Hashimoto's thyroiditis showed a significant reduction in thyroid water content (94.84 ± 1.57% vs 93.07 ± 2.05%, P < 0.05). Concurrently, a decrease was observed in levels of TPOAb and TgAb (TPOAb: 211.30 (92.63-614.62) vs 89.45 (15.9-215.67); TgAb: 17.05 (1.47-81.64) vs 4.1 (0.51-19.42), P < 0.05). In contrast, there were no significant differences in thyroid water content or TPOAb and TgAb levels for patients with Hashimoto's thyroiditis following a normal diet after 6 months (P < 0.05). Conclusion: Dixon-T2WI can quantitatively assess the degree of thyroid inflammation in patients with Hashimoto's thyroiditis. Following a low-carbohydrate diet intervention, there is a significant reduction in thyroid water content and a decrease in levels of TPOAb and TgAb. These results suggest that a low-carbohydrate diet may help alleviate inflammation in patients with Hashimoto's thyroiditis.

18.
Cell Biochem Funct ; 31(8): 643-51, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23281015

RESUMO

It has been well accepted that increased reactive oxygen species (ROS) and the subsequent oxidative stress is one of the major causes of ischemia/reperfusion (I/R) injury. DJ-1 protein, as a multifunctional intracellular protein, plays an important role in regulating cell survival and antioxidant stress. Here, we wondered whether DJ-1 overexpression attenuates simulated ischemia/reperfusion (sI/R)-induced oxidative stress. A rat cDNA encoding DJ-1 was inserted into a mammalian expression vector. After introduction of this construct into H9c2 myocytes, stable clones were obtained. Western blot analysis of the derived clones showed a 2.6-fold increase in DJ-1 protein expressing. Subsequently, the DJ-1 gene-transfected and control H9c2 cells were subjected to sI/R, and then cell viability, lactate dehydrogenase, malondialdehyde, intracellular ROS and antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) were measured appropriately. The results showed that stable overexpression of DJ-1 efficiently attenuated sI/R-induced viability loss and lactate dehydrogenase leakage. Additionally, stable overexpression of DJ-1 inhibited sI/R-induced the elevation of ROS and MDA contents followed by the increase of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) activities and expression. Our data indicate that overexpression of DJ-1 attenuates ROS generation, enhances the cellular antioxidant capacity and prevents sI/R-induced oxidative stress, revealing a novel mechanism of cardioprotection. Importantly, DJ-1 overexpression may be an important part of a protective strategy against ischemia/reperfusion injury.


Assuntos
Hipóxia/genética , Hipóxia/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Estresse Oxidativo/genética , Animais , Células Cultivadas , Peroxirredoxinas , Proteína Desglicase DJ-1 , Ratos
19.
BJR Case Rep ; 9(1): 20220050, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873240

RESUMO

Primary vaginal cancer is rare, accounting for only 2% of all gynecological malignant tumors. Primary vaginal cell carcinoma is mainly squamous cell carcinoma, accounting for about 90%, and adenocarcinoma only accounts for 8-10%. Primary signet ring cell carcinoma of vagina is rare and has not been reported in the literature. This paper reports a case of signet ring cell carcinoma in vagina.

20.
Adv Sci (Weinh) ; 10(21): e2301461, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37166040

RESUMO

For gas separation and catalysis by metal-organic frameworks (MOFs), gas diffusion has a substantial impact on the process' overall rate, so it is necessary to determine the molecular diffusion behavior within the MOFs. In this study, an interpretable machine learing (ML) model, light gradient boosting machine (LGBM), is trained to predict the molecular diffusivity and selectivity of 9 gases (Kr, Xe, CH4 , N2 , H2 S, O2 , CO2 , H2 , and He). For these 9 gases, LGBM displays high accuracy (average R2 = 0.962) and superior extrapolation for the diffusivity of C2 H6 . And this model calculation is five orders of magnitude faster than molecular dynamics (MD) simulations. Subsequently, using the trained LGBM model, an interactive desktop application is developed that can help researchers quickly and accurately calculate the diffusion of molecules in porous crystal materials. Finally, the authors find the difference in the molecular polarizability (ΔPol) is the key factor governing the diffusion selectivity by combining the trained LGBM model with the Shapley additive explanation (SHAP). By the calculation of interpretable ML, the optimal MOFs are selected for separating binary gas mixtures and CO2 methanation. This work provides a new direction for exploring the structure-property relationships of MOFs and realizing the rapid calculation of molecular diffusivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA