Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Mol Psychiatry ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589563

RESUMO

The associations of synaptic loss with amyloid-ß (Aß) and tau pathology measured by positron emission tomography (PET) and plasma analysis in Alzheimer's disease (AD) patients are unknown. Seventy-five participants, including 26 AD patients, 19 mild cognitive impairment (MCI) patients, and 30 normal controls (NCs), underwent [18F]SynVesT-1 PET/MR scans to assess synaptic density and [18F]florbetapir and [18F]MK6240 PET/CT scans to evaluate Aß plaques and tau tangles. Among them, 19 AD patients, 12 MCI patients, and 29 NCs had plasma Aß42/40 and p-tau181 levels measured by the Simoa platform. Twenty-three individuals, 6 AD patients, 4 MCI patients, and 13 NCs, underwent [18F]SynVesT-1 PET/MRI and [18F]MK6240 PET/CT scans during a one-year follow-up assessment. The associations of Aß and tau pathology with cross-sectional and longitudinal synaptic loss were investigated using Pearson correlation analyses, generalized linear models and mediation analyses. AD patients exhibited lower synaptic density than NCs and MCI patients. In the whole cohort, global Aß deposition was associated with synaptic loss in the medial (r = -0.431, p < 0.001) and lateral (r = -0.406, p < 0.001) temporal lobes. Synaptic density in almost all regions was related to the corresponding regional tau tangles independent of global Aß deposition in the whole cohort and stratified groups. Synaptic density in the medial and lateral temporal lobes was correlated with plasma Aß42/40 (r = 0.300, p = 0.020/r = 0.289, p = 0.025) and plasma p-tau 181 (r = -0.412, p = 0.001/r = -0.529, p < 0.001) levels in the whole cohort. Mediation analyses revealed that tau tangles mediated the relationship between Aß plaques and synaptic density in the whole cohort. Baseline tau pathology was positively associated with longitudinal synaptic loss. This study suggested that tau burden is strongly linked to synaptic density independent of Aß plaques, and also can predict longitudinal synaptic loss.

2.
Eur J Nucl Med Mol Imaging ; 51(4): 1012-1022, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37955791

RESUMO

PURPOSE: Aging is a major societal concern due to age-related functional losses. Synapses are crucial components of neural circuits, and synaptic density could be a sensitive biomarker to evaluate brain function. [11C]UCB-J is a positron emission tomography (PET) ligand targeting synaptic vesicle glycoprotein 2A (SV2A), which can be used to evaluate brain synaptic density in vivo. METHODS: We evaluated age-related changes in gray matter synaptic density, volume, and blood flow using [11C]UCB-J PET and magnetic resonance imaging (MRI) in a wide age range of 80 cognitive normal subjects (21-83 years old). Partial volume correction was applied to the PET data. RESULTS: Significant age-related decreases were found in 13, two, and nine brain regions for volume, synaptic density, and blood flow, respectively. The prefrontal cortex showed the largest volume decline (4.9% reduction per decade: RPD), while the synaptic density loss was largest in the caudate (3.6% RPD) and medial occipital cortex (3.4% RPD). The reductions in caudate are consistent with previous SV2A PET studies and likely reflect that caudate is the site of nerve terminals for multiple major tracts that undergo substantial age-related neurodegeneration. There was a non-significant negative relationship between volume and synaptic density reductions in 16 gray matter regions. CONCLUSION: MRI and [11]C-UCB-J PET showed age-related decreases of gray matter volume, synaptic density, and blood flow; however, the regional patterns of the reductions in volume and SV2A binding were different. Those patterns suggest that MR-based measures of GM volume may not be directly representative of synaptic density.


Assuntos
Substância Cinzenta , Glicoproteínas de Membrana , Humanos , Idoso de 80 Anos ou mais , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Glicoproteínas de Membrana/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Sinapses/metabolismo
3.
Mol Psychiatry ; 28(8): 3384-3390, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532797

RESUMO

In humans, the negative effects of alcohol are linked to immune dysfunction in both the periphery and the brain. Yet acute effects of alcohol on the neuroimmune system and its relationships with peripheral immune function are not fully understood. To address this gap, immune response to an alcohol challenge was measured with positron emission tomography (PET) using the radiotracer [11C]PBR28, which targets the 18-kDa translocator protein, a marker sensitive to immune challenges. Participants (n = 12; 5 F; 25-45 years) who reported consuming binge levels of alcohol (>3 drinks for females; >4 drinks for males) 1-3 months before scan day were enrolled. Imaging featured a baseline [11C]PBR28 scan followed by an oral laboratory alcohol challenge over 90 min. An hour later, a second [11C]PBR28 scan was acquired. Dynamic PET data were acquired for at least 90 min with arterial blood sampling to measure the metabolite-corrected input function. [11C]PBR28 volume of distributions (VT) was estimated in the brain using multilinear analysis 1. Subjective effects, blood alcohol levels (BAL), and plasma cytokines were measured during the paradigm. Full completion of the alcohol challenge and data acquisition occurred for n = 8 (2 F) participants. Mean peak BAL was 101 ± 15 mg/dL. Alcohol significantly increased brain [11C]PBR28 VT (n = 8; F(1,49) = 34.72, p > 0.0001; Cohen's d'=0.8-1.7) throughout brain by 9-16%. Alcohol significantly altered plasma cytokines TNF-α (F(2,22) = 17.49, p < 0.0001), IL-6 (F(2,22) = 18.00, p > 0.0001), and MCP-1 (F(2,22) = 7.02, p = 0.004). Exploratory analyses identified a negative association between the subjective degree of alcohol intoxication and changes in [11C]PBR28 VT. These findings provide, to our knowledge, the first in vivo human evidence for an acute brain immune response to alcohol.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Masculino , Feminino , Humanos , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/metabolismo , Cintilografia , Concentração Alcoólica no Sangue , Receptores de GABA/metabolismo , Imunidade , Citocinas/metabolismo
4.
Mol Pharm ; 21(1): 194-200, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38013422

RESUMO

The sigma-2 receptor (σ2R), recently identified as transmembrane protein 97, is expressed in many cell types and mediates important functions in both the peripheral and central nervous systems. Over the years, σ2R has emerged as a potential therapeutic target for cancer and neurological disorders such as Alzheimer's disease (AD). The currently available σ2R radiotracers have been developed primarily for cancer imaging with limited brain uptake. Here, we report the evaluation of the first brain penetrant 18F-labeled radiotracer suitable for positron emission tomography (PET) imaging of σ2R in nonhuman primate brain.


Assuntos
Neoplasias , Compostos Radiofarmacêuticos , Animais , Macaca mulatta , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Primatas
5.
Am J Geriatr Psychiatry ; 32(1): 17-28, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673749

RESUMO

OBJECTIVE: Multimodal imaging techniques have furthered our understanding of how different aspects of Alzheimer's disease (AD) pathology relate to one another. Diffusion tensor imaging (DTI) measures such as mean diffusivity (MD) may be a surrogate measure of the changes in gray matter structure associated with AD. Positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) has been used to quantify synaptic loss, which is the major pathological correlate of cognitive impairment in AD. In this study, we investigated the relationship between gray matter microstructure and synaptic density. METHODS: DTI was used to measure MD and [11C]UCB-J PET to measure synaptic density in 33 amyloid-positive participants with AD and 17 amyloid-negative cognitively normal (CN) participants aged 50-83. Univariate regression analyses were used to assess the association between synaptic density and MD in both the AD and CN groups. RESULTS: Hippocampal MD was inversely associated with hippocampal synaptic density in participants with AD (r = -0.55, p <0.001, df = 31) but not CN (r = 0.13, p = 0.62, df = 15). Exploratory analyses across other regions known to be affected in AD suggested widespread inverse associations between synaptic density and MD in the AD group. CONCLUSION: In the setting of AD, an increase in gray matter MD is inversely associated with synaptic density. These co-occurring changes may suggest a link between synaptic loss and gray matter microstructural changes in AD. Imaging studies of gray matter microstructure and synaptic density may allow important insights into AD-related neuropathology.


Assuntos
Doença de Alzheimer , Substância Branca , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Imagem de Tensor de Difusão , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Tomografia por Emissão de Pósitrons/métodos , Imagem Multimodal , Encéfalo/metabolismo , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso/metabolismo
6.
Alzheimers Dement ; 20(5): 3157-3166, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477490

RESUMO

INTRODUCTION: We aimed to investigate the effect of apolipoprotein E4 (APOE) ε4 on synaptic density in cognitively impaired (CI) participants. METHODS: One hundred ten CI participants underwent amyloid positron emission tomography (PET) with 18F-florbetapir and synaptic density PET with 18F-SynVesT-1. We evaluated the influence of APOE ε4 allele on synaptic density and investigated the effects of ε4 genotype on the associations of synaptic density with Alzheimer's disease (AD) biomarkers. The mediation effects of AD biomarkers on ε4-associated synaptic density loss were analyzed. RESULTS: Compared with non-carriers, APOE ε4 allele carriers exhibited significant synaptic loss in the medial temporal lobe. Amyloid beta (Aß) and tau pathology mediated the effects of APOE ε4 on synaptic density to different extents. The associations between synaptic density and tau pathology were regulated by the APOE ε4 genotype. DISCUSSION: The APOE ε4 allele was associated with decreased synaptic density in CI individuals and may be driven by AD biomarkers.


Assuntos
Peptídeos beta-Amiloides , Apolipoproteína E4 , Disfunção Cognitiva , Tomografia por Emissão de Pósitrons , Sinapses , Humanos , Masculino , Feminino , Apolipoproteína E4/genética , Idoso , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Sinapses/patologia , Sinapses/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Genótipo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Biomarcadores , Pessoa de Meia-Idade , Alelos , Idoso de 80 Anos ou mais , Encéfalo/patologia , Encéfalo/diagnóstico por imagem
7.
Alzheimers Dement ; 20(6): 3876-3888, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634334

RESUMO

INTRODUCTION: Metabotropic glutamate receptor 5 (mGluR5) is involved in regulating integrative brain function and synaptic transmission. Aberrant mGluR5 signaling and relevant synaptic failure play a key role in the pathophysiological mechanism of Alzheimer's disease (AD). METHODS: Ten cognitively impaired (CI) individuals and 10 healthy controls (HCs) underwent [18F]SynVesT-1 and [18F]PSS232 positron emission tomography (PET)/magnetic resonance to assess synaptic density and mGluR5 availability. The associations between mGluR5 availability and synaptic density were examined. A mediation analysis was performed to investigate the possible mediating effects of mGluR5 availability and synaptic loss on the relationship between amyloid deposition and cognition. RESULTS: CI patients exhibited lower mGluR5 availability and synaptic density in the medial temporal lobe than HCs. Regional synaptic density was closely associated with regional mGluR5 availability. mGluR5 availability and synaptic loss partially mediated the relationship between amyloid deposition and cognition. CONCLUSIONS: Reductions in mGluR5 availability and synaptic density exhibit similar spatial patterns in AD and are closely linked. HIGHLIGHTS: Cognitively impaired patients exhibited lower mGluR5 availability and synaptic density in the medial temporal lobe than HCs. Reductions in mGluR5 availability and synaptic density exhibit similar spatial patterns in AD. Regional synaptic density was closely associated with regional mGluR5 availability. mGluR5 availability and synaptic loss partially mediated the relationship between amyloid deposition and global cognition. With further research, modulating mGluR5 availability might be a potential therapeutic strategy for improving synaptic function in AD.


Assuntos
Disfunção Cognitiva , Tomografia por Emissão de Pósitrons , Receptor de Glutamato Metabotrópico 5 , Humanos , Receptor de Glutamato Metabotrópico 5/metabolismo , Masculino , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Feminino , Idoso , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Imageamento por Ressonância Magnética , Sinapses/metabolismo , Sinapses/patologia , Pessoa de Meia-Idade , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
8.
Mol Imaging ; 2023: 8826977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719326

RESUMO

[18F]SynVesT-1 is a PET radiopharmaceutical that binds to the synaptic vesicle protein 2A (SV2A) and serves as a biomarker of synaptic density with widespread clinical research applications in psychiatry and neurodegeneration. The initial goal of this study was to concurrently conduct PET imaging studies with [18F]SynVesT-1 at our laboratories. However, the data in the first two human PET studies had anomalous biodistribution despite the injected product meeting all specifications during the prerelease quality control protocols. Further investigation, including imaging in rats as well as proton and carbon 2D-NMR spectroscopic studies, led to the discovery that a derivative of the precursor had been received from the manufacturer. Hence, we report our investigation and the first-in-human study of [18F]SDM-4MP3, a structural variant of [18F]SynVesT-1, which does not have the requisite characteristics as a PET radiopharmaceutical for imaging SV2A in the central nervous system.


Assuntos
Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Humanos , Animais , Ratos , Distribuição Tecidual
9.
Eur J Nucl Med Mol Imaging ; 50(7): 2081-2099, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36849748

RESUMO

PURPOSE: Currently, there are multiple active clinical trials involving poly(ADP-ribose) polymerase (PARP) inhibitors in the treatment of glioblastoma. The noninvasive quantification of baseline PARP expression using positron emission tomography (PET) may provide prognostic information and lead to more precise treatment. Due to the lack of brain-penetrant PARP imaging agents, the reliable and accurate in vivo quantification of PARP in the brain remains elusive. Herein, we report the synthesis of a brain-penetrant PARP PET tracer, (R)-2-(2-methyl-1-(methyl-11C)pyrrolidin-2-yl)-1H-benzo[d]imidazole-4-carboxamide ([11C]PyBic), and its preclinical evaluations in a syngeneic RG2 rat glioblastoma model and healthy nonhuman primates. METHODS: We synthesized [11C]PyBic using veliparib as the labeling precursor, performed dynamic PET scans on RG2 tumor-bearing rats and calculated the distribution volume ratio (DVR) using simplified reference region method 2 (SRTM2) with the contralateral nontumor brain region as the reference region. We performed biodistribution studies, western blot, and immunostaining studies to validate the in vivo PET quantification results. We characterized the brain kinetics and binding specificity of [11C]PyBic in nonhuman primates on FOCUS220 scanner and calculated the volume of distribution (VT), nondisplaceable volume of distribution (VND), and nondisplaceable binding potential (BPND) in selected brain regions. RESULTS: [11C]PyBic was synthesized efficiently in one step, with greater than 97% radiochemical and chemical purity and molar activity of 148 ± 85 MBq/nmol (n = 6). [11C]PyBic demonstrated PARP-specific binding in RG2 tumors, with 74% of tracer binding in tumors blocked by preinjected veliparib (i.v., 5 mg/kg). The in vivo PET imaging results were corroborated by ex vivo biodistribution, PARP1 immunohistochemistry and immunoblotting data. Furthermore, brain penetration of [11C]PyBic was confirmed by quantitative monkey brain PET, which showed high specific uptake (BPND > 3) and low nonspecific uptake (VND < 3 mL/cm3) in the monkey brain. CONCLUSION: [11C]PyBic is the first brain-penetrant PARP PET tracer validated in a rat glioblastoma model and healthy nonhuman primates. The brain kinetics of [11C]PyBic are suitable for noninvasive quantification of available PARP binding in the brain, which posits [11C]PyBic to have broad applications in oncology and neuroimaging.


Assuntos
Glioblastoma , Ratos , Animais , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Distribuição Tecidual , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Primatas
10.
Mov Disord ; 38(6): 978-989, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37023261

RESUMO

BACKGROUND: Severe reduced synaptic density was observed in spinocerebellar ataxia (SCA) in postmortem neuropathology, but in vivo assessment of synaptic loss remains challenging. OBJECTIVE SPINOCEREBELLAR ATAXIA TYPE 3: The objective of this study was to assess in vivo synaptic loss and its clinical correlates in spinocerebellar ataxia type 3 (SCA3) patients by synaptic vesicle glycoprotein 2A (SV2A)-positron emission tomography (PET) imaging. METHODS: We recruited 74 SCA3 individuals including preataxic and ataxic stages and divided into two cohorts. All participants received SV2A-PET imaging using 18 F-SynVesT-1 for synaptic density assessment. Specifically, cohort 1 received standard PET procedure and quantified neurofilament light chain (NfL), and cohort 2 received simplified PET procedure for exploratory purpose. Bivariate correlation was performed between synaptic loss and clinical as well as genetic assessments. RESULTS: In cohort 1, significant reductions of synaptic density were observed in cerebellum and brainstem in SCA3 ataxia stage compared to preataxic stage and controls. Vermis was found significantly involved in preataxic stage compared to controls. Receiver operating characteristic (ROC) curves highlighted SV2A of vermis, pons, and medulla differentiating preataxic stage from ataxic stage, and SV2A combined with NfL improved the performance. Synaptic density was significantly negatively correlated with disease severity in cerebellum and brainstem (International Co-operative Ataxia Rating Scale: ρ ranging from -0.467 to -0.667, P ≤ 0.002; Scale of Assessment and Rating of Ataxia: ρ ranging from -0.465 to -0.586, P ≤ 0.002). SV2A reduction tendency of cerebellum and brainstem identified in cohort 1 was observed in cohort 2 with simplified PET procedure. CONCLUSIONS: We first identified in vivo synaptic loss was related to disease severity of SCA3, suggesting SV2A PET could be a promising clinical biomarker for disease progression of SCA3. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Machado-Joseph , Humanos , Doença de Machado-Joseph/diagnóstico por imagem , Pirrolidinas , Tomografia por Emissão de Pósitrons/métodos , Ataxia , Glicoproteínas de Membrana/genética , Proteínas do Tecido Nervoso
11.
J Org Chem ; 88(22): 15925-15936, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37939006

RESUMO

By using glyoxylic acid monohydrate as a promoter, a wide range of substances containing a C-SO2 bond could be obtained from N-substituted maleimides or quinones and sodium sulfinates. The protocol features mild reaction conditions, short reaction time, and good atomic economics, which provides an alternative protocol for the α-sulfonylation of α,ß-unsaturated ketones.

12.
Bioorg Med Chem ; 83: 117233, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36933438

RESUMO

We report the design, synthesis and evaluation of five o­aminopyridyl alkynyl derivatives as colony-stimulating factor 1 receptor (CSF-1R) ligands. Compounds 4 and 5 with the fluoroethoxy group at the meta- or para-position of the phenyl ring possessed nanomolar inhibitory potency against CSF-1R with IC50 values of 7.6 nM and 2.3 nM, respectively. Radioligands [18F]4 and [18F]5 were obtained in radiochemical yields of 17.2 ± 5.3% (n = 5, decay-corrected) and 14.0 ± 4.3% (n = 4, decay-corrected), with radiochemical purity of > 99% and molar activity of 9-12 GBq/µmol (n = 5) and 6-8 GBq/µmol (n = 4), respectively. In biodistribution studies, radioligands [18F]4 and [18F]5 showed moderate brain uptake in male ICR mice with 1.52 ± 0.15 and 0.91 ± 0.07% ID/g, respectively, at 15 min. Metabolic stability studies in mouse brain revealed that [18F]4 exhibited high stability while [18F]5 suffered from low stability. Higher accumulation of [18F]4 in the brain of lipopolysaccharide (LPS)-treated mice was observed, and further pretreatment of BLZ945 or CPPC led to remarkable reduction, indicating specific binding of [18F]4 to CSF-1R.


Assuntos
Aminopiridinas , Radioisótopos de Flúor , Doenças Neuroinflamatórias , Tomografia por Emissão de Pósitrons , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Animais , Masculino , Camundongos , Radioisótopos de Flúor/química , Camundongos Endogâmicos ICR , Doenças Neuroinflamatórias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual , Aminopiridinas/química , Aminopiridinas/farmacologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/química
13.
Biopharm Drug Dispos ; 44(1): 48-59, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36825693

RESUMO

PF-05212377 (SAM760) is a potent and selective 5-HT6 antagonist, previously under development for the treatment of Alzheimer's disease. In vitro, PF-05212377 was determined to be a P-gp/non-BCRP human transporter substrate. Species differences were observed in the in vivo brain penetration of PF-05212377 with a ratio of the unbound concentration in brain/unbound concentration in plasma (Cbu /Cpu ) of 0.05 in rat and 0.64 in non-human primates (NHP). Based on pre-clinical evidence, brain penetration and target engagement of PF-05212377 was confirmed in NHP using positron emission tomography (PET) measured 5-HT6 receptor occupancy (%RO). The NHP Cpu EC50 of PF-05212377 was 0.31 nM (consistent with the in vitro human 5HT6 Ki : 0.32 nM). P-gp has been reported to be expressed in higher abundance at the rat BBB and in similar abundance at the BBB of non-human primates and human; brain penetration of PF-05212377 in humans was postulated to be similar to that in non-human primates. In humans, PF-05212377 demonstrated dose and concentration dependent increases in 5-HT6 RO; maximal 5-HT6 RO of ∼80% was measured in humans at doses of ≥15 mg with an estimated unbound plasma EC50 of 0.37 nM (which was similar to the in vitro human 5HT6 binding Ki 0.32 nM). In conclusion, cumulative evidence from NHP and human PET RO assessments confirmed that NHP is more appropriate than the rat for the prediction of human brain penetration of PF-05212377, a P-gp/non-BCRP substrate. Clinical trial number: NCT01258751.


Assuntos
Encéfalo , Serotonina , Humanos , Ratos , Animais , Serotonina/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Primatas/metabolismo
14.
Ren Fail ; 45(2): 2253930, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37724535

RESUMO

BACKGROUND: Cyclophosphamide (CTX) and calcineurin inhibitors (CNIs) based regimens are recommended as immunosuppressive therapies for patients with idiopathic membranous nephropathy (IMN). Focal and segmental glomerular sclerosis (FSGS) lesions, which are common in membranous nephropathy (MN), are poor predictors of outcome. This study compared the differences of prognosis between two regimens in patients with IMN combined with FSGS lesions. METHODS: This retrospective study enrolled 108 patients with biopsy-proven IMN, accompanied with FSGS lesions, nephrotic syndrome and an estimated glomerular filtration rate (eGFR)≥60 mL/min/1.73 m2 who were treated with CTX or CNIs. We used propensity score matching (PSM) for balancing the confounding variables. RESULTS: During follow-up, 10 patients (10/55 [18.2%]; nine males) in the CNIs group showed a 50% decline in eGFR; eight had a not otherwise specified variant. Patients initially treated with CNIs had a significantly higher risk of progression to the primary outcome and a lower probability of complete or total remission. The relapse rate was higher in patients who initially received CNIs- than in those who received CTX-based treatment. Before PSM, age and 24-h urine protein level differed significantly between the groups. The PSM model included data from 72 patients. Worse outcomes were also noted among patients who initially received CNIs than those who received CTX-based treatments after matching. CONCLUSIONS: Patients with MN combined with FSGS lesions have a higher risk of renal functional decline and a higher rate of relapse after CNIs than after CTX therapy.


Assuntos
Glomerulonefrite Membranosa , Glomerulosclerose Segmentar e Focal , Masculino , Humanos , Adulto Jovem , Adulto , Glomerulonefrite Membranosa/complicações , Glomerulonefrite Membranosa/tratamento farmacológico , Glomerulosclerose Segmentar e Focal/complicações , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Estudos Retrospectivos , Inibidores de Calcineurina/uso terapêutico , Ciclofosfamida/uso terapêutico , China
15.
Neuroimage ; 264: 119674, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243269

RESUMO

Brain cannabinoid 1 receptors (CB1Rs) contribute importantly to the regulation of autonomic tone, appetite, mood and cognition. Inconsistent results have been reported from positron emission tomography (PET) studies using different radioligands to examine relationships between age, gender and body mass index (BMI) and CB1R availability in healthy individuals. In this study, we examined these variables in 58 healthy individuals (age range: 18-55 years; 44 male; BMI=27.01±5.56), the largest cohort of subjects studied to date using the CB1R PET ligand [11C]OMAR. There was a significant decline in CB1R availability (VT) with age in the pallidum, cerebellum and posterior cingulate. Adjusting for BMI, age-related decline in VT remained significant in the posterior cingulate among males, and in the cerebellum among women. CB1R availability was higher in women compared to men in the thalamus, pallidum and posterior cingulate. Adjusting for age, CB1R availability negatively correlated with BMI in women but not men. These findings differ from those reported using [11C]OMAR and other radioligands such as [18F]FMPEP-d2 and [18F]MK-9470. Although reasons for these seemingly divergent findings are unclear, the choice of PET radioligand and range of BMI in the current dataset may contribute to the observed differences. This study highlights the need for cross-validation studies using both [11C]OMAR and [18F]FMPEP-d2 within the same cohort of subjects.


Assuntos
Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Masculino , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Índice de Massa Corporal , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Receptor CB1 de Canabinoide
16.
Eur J Nucl Med Mol Imaging ; 49(10): 3482-3491, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34978594

RESUMO

PURPOSE: The loss of synaptic vesicle glycoprotein 2A (SV2A) is well established as the major correlate of epileptogenesis in focal cortical dysplasia type II (FCD II), but this has not been directly tested in vivo. In this positron emission tomography (PET) study with the new tracer 18F-SynVesT-1, we evaluated SV2A abnormalities in patients with FCD II and compared the pattern to 18F-fluorodeoxyglucose (18F-FDG). METHODS: Sixteen patients with proven FCD II and 16 healthy controls were recruited. All FCD II patients underwent magnetic resonance imaging (MRI) and static PET imaging with both 18F-SynVesT-1 and 18F-FDG, while the controls underwent MRI and PET with only 18F-SynVesT-1. Visual assessment of PET images was undertaken. The standardized uptake values (SUVs) of 18F-SynVesT-1 were computed for regions of interest (ROIs), along with SUV ratio (SUVr) between ROI and centrum semiovale (white matter). Asymmetry indices (AIs) were analyzed between the lesion and the contralateral hemisphere for intersubject comparisons. RESULTS: Lesions in the brains of FCD II patients had significantly reduced 18F-SynVesT-1 uptake compared with contralateral regions, and brains of the controls. 18F-SynVesT-1 PET indicated low lesion uptake in 14 patients (87.5%), corresponding to hypometabolism detected by 18F-FDG PET, with higher accuracy for lesion localization than MRI (43.8%) (P < 0.05). AI analyses demonstrated that in the lesions, SUVr for each of the radiotracers were not significantly different (P > 0.05), and 18F-SynVesT-1 SUVr correlated with that of 18F-FDG across subjects (R2 = 0.41, P = 0.008). Subsequent visual ratings indicated that 18F-SynVesT-1 uptake had a more restricted pattern of reduction than 18F-FDG uptake in FCD II lesions (P < 0.05). CONCLUSION: SV2A PET with 18F-SynVesT-1 shows a higher accuracy for the localization of FCD II lesions than MRI and a more restricted pattern of abnormality than 18F-FDG PET.


Assuntos
Fluordesoxiglucose F18 , Malformações do Desenvolvimento Cortical do Grupo I , Epilepsia , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Vesículas Sinápticas , Tomografia Computadorizada por Raios X
17.
Eur J Nucl Med Mol Imaging ; 49(11): 3679-3691, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35633376

RESUMO

PURPOSE: Exploring synaptic density changes during brain growth is crucial to understanding brain development. Previous studies in nonhuman primates report a rapid increase in synapse number between the late gestational period and the early neonatal period, such that synaptic density approaches adult levels by birth. Prenatal synaptic development may have an enduring impact on postnatal brain development, but precisely how synaptic density changes in utero are unknown because current methods to quantify synaptic density are invasive and require post-mortem brain tissue. METHODS: We used synaptic vesicle glycoprotein 2A (SV2A) positron emission tomography (PET) radioligands [11C]UCB-J and [18F]Syn-VesT-1 to conduct the first assessment of synaptic density in the developing fetal brain in gravid rhesus monkeys. Eight pregnant monkeys were scanned twice during the third trimester at two imaging sites. Fetal post-mortem samples were collected near term in a subset of subjects to quantify SV2A density by Western blot. RESULTS: Image-derived fetal brain SV2A measures increased during the third trimester. SV2A concentrations were greater in subcortical regions than in cortical regions at both gestational ages. Near term, SV2A density was higher in primary motor and visual areas than respective associative regions. Post-mortem quantification of SV2A density was significantly correlated with regional SV2A PET measures. CONCLUSION: While further study is needed to determine the exact relationship of SV2A and synaptic density, the imaging paradigm developed in the current study allows for the effective in vivo study of SV2A development in the fetal brain.


Assuntos
Encéfalo , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Macaca mulatta/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons/métodos
18.
Eur J Nucl Med Mol Imaging ; 49(7): 2153-2162, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35107627

RESUMO

PURPOSE: GluN2B containing N-methyl-D-aspartate receptors (NMDARs) play an essential role in neurotransmission and are a potential treatment target for multiple neurological and neurodegenerative diseases, including stroke, Alzheimer's disease, and Parkinson's disease. (R)-[18F]OF-Me-NB1 was reported to be more specific and selective than (S)-[18F]OF-Me-NB1 for the GluN2B subunits of the NMDAR based on their binding affinity to GluN2B and sigma-1 receptors. Here we report a comprehensive evaluation of (R)-[18F]OF-Me-NB1 and (S)-[18F]OF-Me-NB1 in nonhuman primates. METHODS: The radiosynthesis of (R)-[18F]OF-Me-NB1 and (S)-[18F]OF-Me-NB1 started from 18F-fluorination of the boronic ester precursor, followed by removal of the acetyl protecting group. PET scans in two rhesus monkeys were conducted on the Focus 220 scanner. Blocking studies were performed after treatment of the animals with the GluN2B antagonist Co101,244 or the sigma-1 receptor antagonist FTC-146. One-tissue compartment (1TC) model and multilinear analysis-1 (MA1) method with arterial input function were used to obtain the regional volume of distribution (VT, mL/cm3). Occupancy values by the two blockers were obtained by the Lassen plot. Regional non-displaceable binding potential (BPND) was calculated from the corresponding baseline VT and the VND derived from the occupancy plot of the Co101,244 blocking scans. RESULTS: (R)- and (S)-[18F]OF-Me-NB1 were produced in > 99% radiochemical and enantiomeric purity, with molar activity of 224.22 ± 161.69 MBq/nmol at the end of synthesis (n = 10). Metabolism was moderate, with ~ 30% parent compound remaining for (R)-[18F]OF-Me-NB1 and 20% for (S)-[18F]OF-Me-NB1 at 30 min postinjection. Plasma free fraction was 1-2%. In brain regions, both (R)- and (S)-[18F]OF-Me-NB1 displayed fast uptake with slower clearance for the (R)- than (S)-enantiomer. For (R)-[18F]OF-Me-NB1, both the 1TC model and MA1 method gave reliable estimates of regional VT values, with MA1 VT (mL/cm3) values ranging from 8.9 in the cerebellum to 12.8 in the cingulate cortex. Blocking with 0.25 mg/kg of Co101,244 greatly reduced the uptake of (R)-[18F]OF-Me-NB1 across all brain regions, resulting in occupancy of 77% and VND of 6.36, while 0.027 mg/kg of FTC-146 reduced specific binding by 30%. Regional BPND, as a measure of specific binding signals, ranged from 0.40 in the cerebellum to 1.01 in the cingulate cortex. CONCLUSIONS: In rhesus monkeys, (R)-[18F]OF-Me-NB1 exhibited fast kinetics and heterogeneous uptake across brain regions, while the (S)-enantiomer displayed a narrower dynamic range of uptake across regions. A Blocking study with a GluN2B antagonist indicated binding specificity. The value of BPND was > 0.5 in most brain regions, suggesting good in vivo specific binding signals. Taken together, results from the current study demonstrated the potential of (R)-[18F]OF-Me-NB1 as a useful radiotracer for imaging the GluN2B receptors.


Assuntos
Compostos Radiofarmacêuticos , Receptores de N-Metil-D-Aspartato , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Macaca mulatta/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Radioquímica , Compostos Radiofarmacêuticos/química , Receptores de N-Metil-D-Aspartato/metabolismo
19.
Eur J Nucl Med Mol Imaging ; 49(5): 1482-1496, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34761284

RESUMO

PURPOSE: To quantify the synaptic vesicle glycoprotein 2A (SV2A) changes in the whole central nervous system (CNS) under pathophysiological conditions, a high affinity SV2A PET radiotracer with improved in vivo stability is desirable to minimize the potential confounding effect of radiometabolites. The aim of this study was to develop such a PET tracer based on the molecular scaffold of UCB-A, and evaluate its pharmacokinetics, in vivo stability, specific binding, and nonspecific binding signals in nonhuman primate brains, in comparison with [11C]UCB-A, [11C]UCB-J, and [18F]SynVesT-1. METHODS: The racemic SDM-16 (4-(3,5-difluorophenyl)-1-((2-methyl-1H-imidazol-1-yl)methyl)pyrrolidin-2-one) and its two enantiomers were synthesized and assayed for in vitro binding affinities to human SV2A. We synthesized the enantiopure [18F]SDM-16 using the corresponding enantiopure arylstannane precursor. Nonhuman primate brain PET scans were performed on FOCUS 220 scanners. Arterial blood was drawn for the measurement of plasma free fraction (fP), radiometabolite analysis, and construction of the plasma input function. Regional time-activity curves (TACs) were fitted with the one-tissue compartment (1TC) model to obtain the volume of distribution (VT). Nondisplaceable binding potential (BPND) was calculated using either the nondisplaceable volume of distribution (VND) or the centrum semiovale (CS) as the reference region. RESULTS: SDM-16 was synthesized in 3 steps with 44% overall yield and has the highest affinity (Ki = 0.9 nM) to human SV2A among all reported SV2A ligands. [18F]SDM-16 was prepared in about 20% decay-corrected radiochemical yield within 90 min, with greater than 99% radiochemical and enantiomeric purity. This radiotracer displayed high specific binding in monkey brains and was metabolically more stable than the other SV2A PET tracers. The fP of [18F]SDM-16 was 69%, which was higher than those of [11C]UCB-J (46%), [18F]SynVesT-1 (43%), [18F]SynVesT-2 (41%), and [18F]UCB-H (43%). The TACs were well described with the 1TC. The averaged test-retest variability (TRV) was 7 ± 3%, and averaged absolute TRV (aTRV) was 14 ± 7% for the analyzed brain regions. CONCLUSION: We have successfully synthesized a novel SV2A PET tracer [18F]SDM-16, which has the highest SV2A binding affinity and metabolical stability among published SV2A PET tracers. The [18F]SDM-16 brain PET images showed superb contrast between gray matter and white matter. Moreover, [18F]SDM-16 showed high specific and reversible binding in the NHP brains, allowing for the reliable and sensitive quantification of SV2A, and has potential applications in the visualization and quantification of SV2A beyond the brain.


Assuntos
Glicoproteínas de Membrana , Vesículas Sinápticas , Aminoacridinas , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Vesículas Sinápticas/metabolismo
20.
Brain Behav Immun ; 106: 262-269, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36058419

RESUMO

Immune-brain interactions influence the pathophysiology of addiction. Lipopolysaccharide (LPS)-induced systemic inflammation produces effects on reward-related brain regions and the dopamine system. We previously showed that LPS amplifies dopamine elevation induced by methylphenidate (MP), compared to placebo (PBO), in eight healthy controls. However, the effects of LPS on the dopamine system of tobacco smokers have not been explored. The goal of Study 1 was to replicate previous findings in an independent cohort of tobacco smokers. The goal of Study 2 was to combine tobacco smokers with the aforementioned eight healthy controls to examine the effect of LPS on dopamine elevation in a heterogenous sample for power and effect size determination. Eight smokers were each scanned with [11C]raclopride positron emission tomography three times-at baseline, after administration of LPS (0.8 ng/kg, intravenously) and MP (40 mg, orally), and after administration of PBO and MP, in a double-blind, randomized order. Dopamine elevation was quantified as change in [11C]raclopride binding potential (ΔBPND) from baseline. A repeated-measures ANOVA was conducted to compare LPS and PBO conditions. Smokers and healthy controls were well-matched for demographics, drug dosing, and scanning parameters. In Study 1, MP-induced striatal dopamine elevation was significantly higher following LPS than PBO (p = 0.025, 18 ± 2.9 % vs 13 ± 2.7 %) for smokers. In Study 2, MP-induced striatal dopamine elevation was also significantly higher under LPS than under PBO (p < 0.001, 18 ± 1.6 % vs 11 ± 1.5 %) in the combined sample. Smoking status did not interact with the effect of condition. This is the first study to translate the phenomenon of amplified dopamine elevation after experimental activation of the immune system to an addicted sample which may have implications for drug reinforcement, seeking, and treatment.


Assuntos
Estimulantes do Sistema Nervoso Central , Metilfenidato , Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Dopamina/metabolismo , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/metabolismo , Metilfenidato/farmacologia , Tomografia por Emissão de Pósitrons , Racloprida/metabolismo , Racloprida/farmacologia , Fumantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA