Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
1.
Traffic ; 25(1): e12925, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272448

RESUMO

Ceroid lipofuscinosis neuronal 5 (CLN5) and cathepsin D (CTSD) are soluble lysosomal enzymes that also localize extracellularly. In humans, homozygous mutations in CLN5 and CTSD cause CLN5 disease and CLN10 disease, respectively, which are two subtypes of neuronal ceroid lipofuscinosis (commonly known as Batten disease). The mechanisms regulating the intracellular trafficking of CLN5 and CTSD and their release from cells are not well understood. Here, we used the social amoeba Dictyostelium discoideum as a model system to examine the pathways and cellular components that regulate the intracellular trafficking and release of the D. discoideum homologs of human CLN5 (Cln5) and CTSD (CtsD). We show that both Cln5 and CtsD contain signal peptides for secretion that facilitate their release from cells. Like Cln5, extracellular CtsD is glycosylated. In addition, Cln5 release is regulated by the amount of extracellular CtsD. Autophagy induction promotes the release of Cln5, and to a lesser extent CtsD. Release of Cln5 requires the autophagy proteins Atg1, Atg5, and Atg9, as well as autophagosomal-lysosomal fusion. Atg1 and Atg5 are required for the release of CtsD. Together, these data support a model where Cln5 and CtsD are actively released from cells via their signal peptides for secretion and pathways linked to autophagy. The release of Cln5 and CtsD from cells also requires microfilaments and the D. discoideum homologs of human AP-3 complex mu subunit, the lysosomal-trafficking regulator LYST, mucopilin-1, and the Wiskott-Aldrich syndrome-associated protein WASH, which all regulate lysosomal exocytosis in this model organism. These findings suggest that lysosomal exocytosis also facilitates the release of Cln5 and CtsD from cells. In addition, we report the roles of ABC transporters, microtubules, osmotic stress, and the putative D. discoideum homologs of human sortilin and cation-independent mannose-6-phosphate receptor in regulating the intracellular/extracellular distribution of Cln5 and CtsD. In total, this study identifies the cellular mechanisms regulating the release of Cln5 and CtsD from D. discoideum cells and provides insight into how altered trafficking of CLN5 and CTSD causes disease in humans.


Assuntos
Dictyostelium , Lipofuscinoses Ceroides Neuronais , Humanos , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Catepsina D/metabolismo , Dictyostelium/metabolismo , Sinais Direcionadores de Proteínas , Proteínas de Membrana Lisossomal/genética
2.
FASEB J ; 38(1): e23366, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38102957

RESUMO

Cytokinins (CKs) are a class of growth-promoting signaling molecules that affect multiple cellular and developmental processes. These phytohormones are well studied in plants, but their presence continues to be uncovered in organisms spanning all kingdoms, which poses new questions about their roles and functions outside of plant systems. Cytokinin production can be initiated by one of two different biosynthetic enzymes, adenylate isopentenyltransfases (IPTs) or tRNA isopentenyltransferases (tRNA-IPTs). In this study, the social amoeba, Dictyostelium discoideum, was used to study the role of CKs by generating deletion and overexpression strains of its single adenylate-IPT gene, iptA. The life cycle of D. discoideum is unique and possesses both single- and multicellular stages. Vegetative amoebae grow and divide while food resources are plentiful, and multicellular development is initiated upon starvation, which includes distinct life cycle stages. CKs are produced in D. discoideum throughout its life cycle and their functions have been well studied during the later stages of multicellular development of D. discoideum. To investigate potential expanded roles of CKs, this study focused on vegetative growth and early developmental stages. We found that iptA-deficiency results in cytokinesis defects, and both iptA-deficiency and overexpression results in dysregulated tricarboxylic acid (TCA) cycle and amino acid metabolism, as well as increased levels of adenosine monophosphate (AMP). Collectively, these findings extend our understanding of CK function in amoebae, indicating that iptA loss and overexpression alter biological processes during vegetative growth that are distinct from those reported during later development.


Assuntos
Dictyostelium , Dictyostelium/genética , Citocinese , Citocininas/genética , Citocininas/metabolismo , RNA de Transferência/metabolismo , Aminoácidos/metabolismo
3.
Small ; : e2401472, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863131

RESUMO

The pre-clinical validation of cell therapies requires monitoring the biodistribution of transplanted cells in tissues of host organisms. Real-time detection of these cells in the circulatory system and identification of their aggregation state is a crucial piece of information, but necessitates deep penetration and fast imaging with high selectivity, subcellular resolution, and high throughput. In this study, multiphoton-based in-flow detection of human stem cells in whole, unfiltered blood is demonstrated in a microfluidic channel. The approach relies on a multiphoton microscope with diffractive scanning in the direction perpendicular to the flow via a rapidly wavelength-swept laser. Stem cells are labeled with metal oxide harmonic nanoparticles. Thanks to their strong and quasi-instantaneous second harmonic generation (SHG), an imaging rate in excess of 10 000 frames per second is achieved with pixel dwell times of 1 ns, a duration shorter than typical fluorescence lifetimes yet compatible with SHG. Through automated cell identification and segmentation, morphological features of each individual detected event are extracted and cell aggregates are distinguished from isolated cells. This combination of high-speed multiphoton microscopy and high-sensitivity SHG nanoparticle labeling in turbid media promises the detection of rare cells in the bloodstream for assessing novel cell-based therapies.

4.
Opt Express ; 32(4): 5809-5825, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439298

RESUMO

Circumferential scanning in endoscopic imaging is crucial across various disciplines, and optical coherence tomography (OCT) is often the preferred choice due to its high-speed, high-resolution, and micron-scale imaging capabilities. Moreover, real-time and high-speed 3D endoscopy is a pivotal technology for medical screening and precise surgical guidance, among other applications. However, challenges such as image jitter and non-uniform rotational distortion (NURD) are persistent obstacles that hinder real-time visualization during high-speed OCT procedures. To address this issue, we developed an innovative, low-cost endoscope that employs a brushless DC motor for scanning, and a sensorless technique for triggering and synchronizing OCT imaging with the scanning motor. This sensorless approach uses the motor's electrical feedback (back electromotive force, BEMF) as a virtual Hall sensor to initiate OCT image acquisition and synchronize it with a Fourier Domain Mode-Locked (FDML)-based Megahertz OCT system. Notably, the implementation of BEMF-triggered OCT has led to a substantial reduction in image jitter and NURD (<4 mrad), thereby opening up a new window for real-time visualization capabilities. This approach suggests potential benefits across various applications, aiming to provide a more accurate, deployable, and cost-effective solution. Subsequent studies can explore the adaptability of this system to specific clinical scenarios and its performance under practical endoscopic conditions.

5.
EMBO Rep ; 23(10): e54136, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35912982

RESUMO

N-terminal sequences are important sites for post-translational modifications that alter protein localization, activity, and stability. Dipeptidyl peptidase 9 (DPP9) is a serine aminopeptidase with the rare ability to cleave off N-terminal dipeptides with imino acid proline in the second position. Here, we identify the tumor-suppressor BRCA2 as a DPP9 substrate and show this interaction to be induced by DNA damage. We present crystallographic structures documenting intracrystalline enzymatic activity of DPP9, with the N-terminal Met1-Pro2 of a BRCA21-40 peptide captured in its active site. Intriguingly, DPP9-depleted cells are hypersensitive to genotoxic agents and are impaired in the repair of DNA double-strand breaks by homologous recombination. Mechanistically, DPP9 targets BRCA2 for degradation and promotes the formation of RAD51 foci, the downstream function of BRCA2. N-terminal truncation mutants of BRCA2 that mimic a DPP9 product phenocopy reduced BRCA2 stability and rescue RAD51 foci formation in DPP9-deficient cells. Taken together, we present DPP9 as a regulator of BRCA2 stability and propose that by fine-tuning the cellular concentrations of BRCA2, DPP9 alters the BRCA2 interactome, providing a possible explanation for DPP9's role in cancer.


Assuntos
Reparo do DNA , Dipeptidil Peptidases e Tripeptidil Peptidases , Aminopeptidases , DNA , Dano ao DNA , Dipeptídeos , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Prolina , Rad51 Recombinase/genética , Serina
6.
Appl Microbiol Biotechnol ; 108(1): 201, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349390

RESUMO

The triterpene squalene is widely used in the food, cosmetics and pharmaceutical industries due to its antioxidant, antistatic and anti-carcinogenic properties. It is usually obtained from the liver of deep sea sharks, which are facing extinction. Alternative production organisms are marine protists from the family Thraustochytriaceae, which produce and store large quantities of various lipids. Squalene accumulation in thraustochytrids is complex, as it is an intermediate in sterol biosynthesis. Its conversion to squalene 2,3-epoxide is the first step in sterol synthesis and is heavily oxygen dependent. Hence, the oxygen supply during cultivation was investigated in our study. In shake flask cultivations, a reduced oxygen supply led to increased squalene and decreased sterol contents and yields. Oxygen-limited conditions were applied to bioreactor scale, where squalene accumulation and growth of Schizochytrium sp. S31 was determined in batch, fed-batch and continuous cultivation. The highest dry matter (32.03 g/L) was obtained during fed-batch cultivation, whereas batch cultivation yielded the highest biomass productivity (0.2 g/L*h-1). Squalene accumulation benefited from keeping the microorganisms in the growth phase. Therefore, the highest squalene content of 39.67 ± 1.34 mg/g was achieved by continuous cultivation (D = 0.025 h-1) and the highest squalene yield of 1131 mg/L during fed-batch cultivation. Volumetric and specific squalene productivity both reached maxima in the continuous cultivation at D = 0.025 h-1 (6.94 ± 0.27 mg/L*h-1 and 1.00 ± 0.03 mg/g*h-1, respectively). Thus, the choice of a suitable cultivation method under oxygen-limiting conditions depends heavily on the process requirements. KEY POINTS: • Measurements of respiratory activity and backscatter light of thraustochytrids • Oxygen limitation increased squalene accumulation in Schizochytrium sp. S31 • Comparison of different cultivation methods under oxygen-limiting conditions.


Assuntos
Estramenópilas , Triterpenos , Esqualeno , Oxigênio , Esteróis
7.
Acta Neurochir (Wien) ; 166(1): 102, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396016

RESUMO

BACKGROUND: The diagnosis of brain tumor is a serious event for the affected patient. Surgical resection is a crucial part in the treatment of brain tumors. However, the distinction between tumor and brain tissue can be difficult, even for experienced neurosurgeons. This is especially true in the case of gliomas. In this project we examined whether the biomechanical parameters elasticity and stress relaxation behavior are suitable as additional differentiation criteria between tumorous (glioblastoma multiforme; glioblastoma, IDH-wildtype; GBM) and non-tumorous, peritumoral tissue. METHODS: Indentation measurements were used to examine non-tumorous human brain tissue and GBM samples for the biomechanical properties of elasticity and stress-relaxation behavior. The results of these measurements were then used in a classification algorithm (Logistic Regression) to distinguish between tumor and non-tumor. RESULTS: Differences could be found in elasticity spread and relaxation behavior between tumorous and non-tumorous tissue. Classification was successful with a sensitivity/recall of 83% (sd = 12%) and a precision of 85% (sd = 9%) for detecting tumorous tissue. CONCLUSION: The findings imply that the data on mechanical characteristics, with particular attention to stress relaxation behavior, can serve as an extra element in differentiating tumorous brain tissue from non-tumorous brain tissue.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Glioma/patologia , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Algoritmos
8.
J Allergy Clin Immunol ; 152(5): 1336-1344.e5, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37544411

RESUMO

BACKGROUND: Genetic defects in components of inflammasomes can cause autoinflammation. Biallelic loss-of-function mutations in dipeptidyl peptidase 9 (DPP9), a negative regulator of the NLRP1 and CARD8 inflammasomes, have recently been shown to cause an inborn error of immunity characterized by pancytopenia, skin manifestations, and increased susceptibility to infections. OBJECTIVE: We sought to study the molecular basis of autoinflammation in a patient with severe infancy-onset hyperinflammation associated with signs of fulminant hemophagocytic lymphohistiocytosis. METHODS: Using heterologous cell models as well as patient cells, we performed genetic, immunologic, and molecular investigations to identify the genetic cause and to assess the impact of the identified mutation on inflammasome activation. RESULTS: The patient exhibited pancytopenia with decreased neutrophils and T, B, and natural killer cells, and markedly elevated levels of lactate dehydrogenase, ferritin, soluble IL-2 receptor, and triglycerides. In addition, serum levels of IL-1ß and IL-18 were massively increased, consistent with inflammasome activation. Genetic analysis revealed a previously undescribed de novo mutation in DPP9 (c.755G>C, p.Arg252Pro) affecting a highly conserved amino acid residue. The mutation led to destabilization of the DPP9 protein as shown in transiently transfected HEK293T cells and in patient-derived induced pluripotent stem cells. Using functional inflammasome assays in HEK293T cells, we demonstrated that mutant DPP9 failed to restrain the NLRP1 and CARD8 inflammasomes, resulting in constitutive inflammasome activation. These findings suggest that the Arg252Pro DPP9 mutation acts in a dominant-negative manner. CONCLUSIONS: A de novo mutation in DPP9 leads to severe infancy-onset autoinflammation because of unleashed inflammasome activation.


Assuntos
Linfo-Histiocitose Hemofagocítica , Pancitopenia , Humanos , Proteínas Adaptadoras de Sinalização CARD/genética , Inflamassomos/genética , Inflamassomos/metabolismo , Linfo-Histiocitose Hemofagocítica/genética , Células HEK293 , Proteínas Reguladoras de Apoptose/genética , Mutação , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Proteínas de Neoplasias/genética
9.
J Neurochem ; 165(5): 643-659, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37022340

RESUMO

Ceroid lipofuscinosis neuronal (CLN) genes encode 13 proteins that localize throughout the endomembrane system to regulate a variety of cellular processes. In humans, mutations in CLN genes cause a devastating form of neurodegeneration called neuronal ceroid lipofuscinosis (NCL), commonly known as Batten disease. Each CLN gene is associated with a specific subtype of the disease that differ from each other in severity and age of onset. The NCLs affect all ages and ethnicities worldwide but primarily affect children. The pathology underlying the NCLs is poorly understood, which has prevented the development of a cure or effective therapy for most subtypes of the disease. A growing body of literature supports the networking of CLN genes and proteins within cells, which aligns with the broadly similar cellular and clinical manifestations among the different subtypes of NCL. Here, all relevant literature is reviewed to provide a comprehensive overview of our current understanding of how CLN genes and proteins are networked in mammalian cells with an aim toward revealing new molecular targets for therapy development. Intriguingly, CLN gene and protein networking extends beyond the NCLs as recent work has linked several CLN genes and proteins to other forms of neurodegeneration such as Alzheimer's disease and Parkinson's disease. Thus, a deeper understanding of the pathways and cellular processes impacted by mutations in CLN genes will not only strengthen our knowledge of the pathological mechanisms underlying the NCLs but may also provide new insight into related forms of neurodegeneration.


Assuntos
Lipofuscinoses Ceroides Neuronais , Animais , Criança , Humanos , Lipofuscinoses Ceroides Neuronais/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Neurônios/metabolismo , Fosfoproteínas/genética , Mamíferos/metabolismo
10.
Opt Lett ; 48(14): 3713-3716, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37450732

RESUMO

Four-wave mixing (FWM) enables the generation and amplification of light in spectral regions where suitable fiber gain media are unavailable. The 1300 nm and 900 nm regions are of especially high interest for time-encoded (TICO) stimulated Raman scattering microscopy and spectro-temporal laser imaging by diffracted excitation (SLIDE) two-photon microscopy. We present a new, to the best of our knowledge, FWM setup where we shift the power of a home-built fully fiber-based master oscillator power amplifier (MOPA) at 1064 nm to the 1300-nm region of a rapidly wavelength-sweeping Fourier domain mode-locked (FDML) laser in a photonic crystal fiber (PCF) creating pulses in the 900-nm region. The resulting 900-nm light can be wavelength swept over 54 nm and has up to 2.5 kW (0.2 µJ) peak power and a narrow instantaneous spectral linewidth of 70 pm. The arbitrary pulse patterns of the MOPA and the fast wavelength tuning of the FDML laser (419 kHz) allow it to rapidly tune the FWM light enabling new and faster TICO-Raman microscopy, SLIDE imaging, and other applications.


Assuntos
Tecnologia de Fibra Óptica , Lasers , Desenho de Equipamento , Microscopia Confocal
11.
Opt Lett ; 48(23): 6096-6099, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039200

RESUMO

Swept-source lasers are versatile light sources for spectroscopy, imaging, and microscopy. Swept-source-powered multiphoton microscopy can achieve high-speed, inertia-free point scanning with MHz line-scan rates. The recently introduced spectro-temporal laser imaging by diffractive excitation (SLIDE) technique employs swept-source lasers to achieve kilohertz imaging rates by using a swept-source laser in combination with a diffraction grating for point scanning. Multiphoton microscopy at a longer wavelength, especially in the shortwave infrared (SWIR) region, can have advantages in deep tissue penetration or applications in light detection and ranging (LiDAR). Here we present a swept-source laser around 1550 nm providing high-speed wavelength agility and high peak power pulses for nonlinear excitation. The swept-source laser is a Fourier-domain mode-locked (FDML) laser operating at 326 kHz sweep rate. For high peak powers, the continuous wave (cw) output is pulse modulated to short picosecond pulses and amplified using erbium-doped fiber amplifiers (EDFAs) to peak powers of several kilowatts. This FDML-master oscillator power amplifier (FDML-MOPA) setup uses reliable, low-cost fiber components. As proof-of-principle measurement, we show third-harmonic generation (THG) using harmonic nanoparticles at the 10 MHz pulse excitation rate. This new, to the best of our knowledge, laser source provides unique performance parameters for applications in nonlinear microscopy, spectroscopy, and ranging.

12.
Nat Rev Mol Cell Biol ; 12(3): 152-62, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21326199

RESUMO

Controlled proteolysis underlies a vast diversity of protective and regulatory processes that are of key importance to cell fate. The unique molecular architecture of the widely conserved high temperature requirement A (HTRA) proteases has evolved to mediate critical aspects of ATP-independent protein quality control. The simple combination of a classic Ser protease domain and a carboxy-terminal peptide-binding domain produces cellular factors of remarkable structural and functional plasticity that allow cells to rapidly respond to the presence of misfolded or mislocalized polypeptides.


Assuntos
Serina Proteases/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ativação Enzimática , Humanos , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Domínios PDZ , Fotossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Serina Proteases/química , Serina Proteases/genética , Temperatura
13.
Bioessays ; 43(4): e2000156, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33448043

RESUMO

Ancient pathways promoting unicellularity and multicellularity are associated with cancer, the former being pro-oncogenic and the latter acting to suppress oncogenesis. However, there are only a limited number of non-vertebrate models for studying these pathways. Here, we review Dictyostelium discoideum and describe how it can be used to understand these gene networks. D. discoideum has a unicellular and multicellular life cycle, making it possible to study orthologs of cancer-associated genes in both phases. During development, differentiated amoebae form a fruiting body composed of a mass of spores that are supported atop a stalk. A portion of the cells sacrifice themselves to become non-reproductive stalk cells. Cheating disrupts the principles of multicellularity, as cheater cells alter their cell fate to preferentially become spores. Importantly, D. discoideum has gene networks and several strategies for maintaining multicellularity. Therefore, D. discoideum can help us better understand how conserved genes and pathways involved in multicellularity also influence cancer development, potentially identifying new therapeutic avenues.


Assuntos
Amoeba , Dictyostelium , Neoplasias , Amoeba/genética , Diferenciação Celular , Dictyostelium/genética , Humanos
14.
Proc Natl Acad Sci U S A ; 117(3): 1414-1418, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31907318

RESUMO

Startling reports described the paradoxical triggering of the human mitogen-activated protein kinase pathway when a small-molecule inhibitor specifically inactivates the BRAF V600E protein kinase but not wt-BRAF. We performed a conceptual analysis of the general phenomenon "activation by inhibition" using bacterial and human HtrA proteases as models. Our data suggest a clear explanation that is based on the classic biochemical principles of allostery and cooperativity. Although substoichiometric occupancy of inhibitor binding sites results in partial inhibition, this effect is overrun by a concomitant activation of unliganded binding sites. Therefore, when an inhibitor of a cooperative enzyme does not reach saturating levels, a common scenario during drug administration, it may cause the contrary of the desired effect. The implications for drug development are discussed.


Assuntos
Sítio Alostérico , Antineoplásicos/farmacologia , Proteínas de Choque Térmico/antagonistas & inibidores , Serina Peptidase 1 de Requerimento de Alta Temperatura A/antagonistas & inibidores , Proteínas Periplásmicas/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Regulação Alostérica , Antineoplásicos/química , Escherichia coli , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/química , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Proteínas Periplásmicas/química , Proteínas Periplásmicas/metabolismo , Inibidores de Proteases/química , Ligação Proteica , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(6): 2894-2905, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31988137

RESUMO

The Mediator kinase module regulates eukaryotic transcription by phosphorylating transcription-related targets and by modulating the association of Mediator and RNA polymerase II. The activity of its catalytic core, cyclin-dependent kinase 8 (CDK8), is controlled by Cyclin C and regulatory subunit MED12, with its deregulation contributing to numerous malignancies. Here, we combine in vitro biochemistry, cross-linking coupled to mass spectrometry, and in vivo studies to describe the binding location of the N-terminal segment of MED12 on the CDK8/Cyclin C complex and to gain mechanistic insights into the activation of CDK8 by MED12. Our data demonstrate that the N-terminal portion of MED12 wraps around CDK8, whereby it positions an "activation helix" close to the T-loop of CDK8 for its activation. Intriguingly, mutations in the activation helix that are frequently found in cancers do not diminish the affinity of MED12 for CDK8, yet likely alter the exact positioning of the activation helix. Furthermore, we find the transcriptome-wide gene-expression changes in human cells that result from a mutation in the MED12 activation helix to correlate with deregulated genes in breast and colon cancer. Finally, functional assays in the presence of kinase inhibitors reveal that binding of MED12 remodels the active site of CDK8 and thereby precludes the inhibition of ternary CDK8 complexes by type II kinase inhibitors. Taken together, our results not only allow us to propose a revised model of how CDK8 activity is regulated by MED12, but also offer a path forward in developing small molecules that target CDK8 in its MED12-bound form.


Assuntos
Quinase 8 Dependente de Ciclina/metabolismo , Complexo Mediador/metabolismo , Domínio Catalítico , Ciclina C/genética , Ciclina C/metabolismo , Quinase 8 Dependente de Ciclina/química , Quinase 8 Dependente de Ciclina/genética , Ativação Enzimática , Humanos , Complexo Mediador/genética , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos
16.
BMC Neurosci ; 23(1): 10, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246032

RESUMO

Calcium dysregulation ("Calcium Hypothesis") is an early and critical event in Alzheimer's and other neurodegenerative diseases. Calcium binds to and regulates the small regulatory protein calmodulin that in turn binds to and regulates several hundred calmodulin binding proteins. Initial and continued research has shown that many calmodulin binding proteins mediate multiple events during the onset and progression of Alzheimer's disease, thus establishing the "Calmodulin Hypothesis". To gain insight into the general applicability of this hypothesis, the involvement of calmodulin in neuroinflammation in Alzheimer's, amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease, frontotemporal dementia, and other dementias was explored. After a literature search for calmodulin binding, 11 different neuroinflammatory proteins (TREM2, CD33, PILRA, CR1, MS4A, CLU, ABCA7, EPHA1, ABCA1, CH3L1/YKL-40 and NLRP3) were scanned for calmodulin binding domains using the Calmodulin Target Database. This analysis revealed the presence of at least one binding domain within which visual scanning demonstrated the presence of valid binding motifs. Coupled with previous research that identified 13 other neuroinflammation linked proteins (BACE1, BIN1, CaMKII, PP2B, PMCA, NOS, NMDAR, AchR, Ado A2AR, Aß, APOE, SNCA, TMEM175), this work shows that at least 24 critical proteins involved in neuroinflammation are putative or proven calmodulin binding proteins. Many of these proteins are linked to multiple neurodegenerative diseases indicating that calmodulin binding proteins lie at the heart of neuroinflammatory events associated with multiple neurodegenerative diseases. Since many calmodulin-based pharmaceuticals have been successfully used to treat Huntington's and other neurodegenerative diseases, these findings argue for their immediate therapeutic implementation.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Humanos , Doenças Neuroinflamatórias
17.
Angew Chem Int Ed Engl ; 61(47): e202210498, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36089535

RESUMO

Dipeptidyl peptidases 8 and 9 (DPP8/9) have gathered interest as drug targets due to their important roles in biological processes like immunity and tumorigenesis. Elucidation of their distinct individual functions remains an ongoing task and could benefit from the availability of novel, chemically diverse and selective chemical tools. Here, we report the activity-based protein profiling (ABPP)-mediated discovery of 4-oxo-ß-lactams as potent, non-substrate-like nanomolar DPP8/9 inhibitors. X-ray crystallographic structures revealed different ligand binding modes for DPP8 and DPP9, including an unprecedented targeting of an extended S2' (eS2') subsite in DPP8. Biological assays confirmed inhibition at both target and cellular levels. Altogether, our integrated chemical proteomics and structure-guided small molecule design approach led to novel DPP8/9 inhibitors with alternative molecular inhibition mechanisms, delivering the highest selectivity index reported to date.


Assuntos
Dipeptidases , Dipeptidases/metabolismo , beta-Lactamas/farmacologia , Dipeptidil Peptidases e Tripeptidil Peptidases , Proteômica , Cristalografia por Raios X
18.
Opt Lett ; 46(14): 3456-3459, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34264237

RESUMO

Stimulated Raman scattering (SRS) microscopy for biomedical analysis can provide a molecular localization map to infer pathological tissue changes. Compared to spontaneous Raman, SRS achieves much faster imaging speeds at reduced spectral coverage. By targeting spectral features in the information dense fingerprint region, SRS allows fast and reliable imaging. We present time-encoded (TICO) SRS microscopy of unstained head-and-neck biopsies in the fingerprint region with molecular contrast. We combine a Fourier-domain mode-locked (FDML) laser with a master oscillator power amplifier (MOPA) to cover Raman transitions from 1500-1800cm-1. Both lasers are fiber-based and electronically programmable making this fingerprint TICO system robust and reliable. The results of our TICO approach were cross-checked with a spontaneous Raman micro-spectrometer and show good agreement, paving the way toward clinical applications.


Assuntos
Microscopia Óptica não Linear , Faringe , Humanos , Lasers , Microscopia , Análise Espectral Raman
19.
Proc Natl Acad Sci U S A ; 115(7): E1437-E1445, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29382749

RESUMO

Dipeptidyl peptidases 8 and 9 are intracellular N-terminal dipeptidyl peptidases (preferentially postproline) associated with pathophysiological roles in immune response and cancer biology. While the DPP family member DPP4 is extensively characterized in molecular terms as a validated therapeutic target of type II diabetes, experimental 3D structures and ligand-/substrate-binding modes of DPP8 and DPP9 have not been reported. In this study we describe crystal and molecular structures of human DPP8 (2.5 Å) and DPP9 (3.0 Å) unliganded and complexed with a noncanonical substrate and a small molecule inhibitor, respectively. Similar to DPP4, DPP8 and DPP9 molecules consist of one ß-propeller and α/ß hydrolase domain, forming a functional homodimer. However, they differ extensively in the ligand binding site structure. In intriguing contrast to DPP4, where liganded and unliganded forms are closely similar, ligand binding to DPP8/9 induces an extensive rearrangement at the active site through a disorder-order transition of a 26-residue loop segment, which partially folds into an α-helix (R-helix), including R160/133, a key residue for substrate binding. As vestiges of this helix are also seen in one of the copies of the unliganded form, conformational selection may contributes to ligand binding. Molecular dynamics simulations support increased flexibility of the R-helix in the unliganded state. Consistently, enzyme kinetics assays reveal a cooperative allosteric mechanism. DPP8 and DPP9 are closely similar and display few opportunities for targeted ligand design. However, extensive differences from DPP4 provide multiple cues for specific inhibitor design and development of the DPP family members as therapeutic targets or antitargets.


Assuntos
Dipeptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Homeostase/fisiologia , Conformação Proteica , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Dipeptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Humanos , Estrutura Molecular , Domínios Proteicos
20.
Proc Natl Acad Sci U S A ; 115(17): E3932-E3939, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29636417

RESUMO

Human metallocarboxypeptidase O (hCPO) is a recently discovered digestive enzyme localized to the apical membrane of intestinal epithelial cells. Unlike pancreatic metallocarboxypeptidases, hCPO is glycosylated and produced as an active enzyme with distinctive substrate specificity toward C-terminal (C-t) acidic residues. Here we present the crystal structure of hCPO at 1.85-Å resolution, both alone and in complex with a carboxypeptidase inhibitor (NvCI) from the marine snail Nerita versicolor The structure provides detailed information regarding determinants of enzyme specificity, in particular Arg275, placed at the bottom of the substrate-binding pocket. This residue, located at "canonical" position 255, where it is Ile in human pancreatic carboxypeptidases A1 (hCPA1) and A2 (hCPA2) and Asp in B (hCPB), plays a dominant role in determining the preference of hCPO for acidic C-t residues. Site-directed mutagenesis to Asp and Ala changes the specificity to C-t basic and hydrophobic residues, respectively. The single-site mutants thus faithfully mimic the enzymatic properties of CPB and CPA, respectively. hCPO also shows a preference for Glu over Asp, probably as a consequence of a tighter fitting of the Glu side chain in its S1' substrate-binding pocket. This unique preference of hCPO, together with hCPA1, hCPA2, and hCPB, completes the array of C-t cleavages enabling the digestion of the dietary proteins within the intestine. Finally, in addition to activity toward small synthetic substrates and peptides, hCPO can also trim C-t extensions of proteins, such as epidermal growth factor, suggesting a role in the maturation and degradation of growth factors and bioactive peptides.


Assuntos
Carboxipeptidases/química , Pâncreas/enzimologia , Inibidores de Proteases/química , Carboxipeptidases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Humanos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA