Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
PLoS Genet ; 17(9): e1009751, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34492000

RESUMO

Some DNA viruses infect host animals usually by integrating their DNAs into the host genome. However, the mechanisms for integration remain largely unknown. Here, we find that Cotesia vestalis bracovirus (CvBV), a polydnavirus of the parasitic wasp C. vestalis (Haliday), integrates its DNA circles into host Plutella xylostella (L.) genome by two distinct strategies, conservatively and randomly, through high-throughput sequencing analysis. We confirmed that the conservatively integrating circles contain an essential "8+5" nucleotides motif which is required for integration. Then we find CvBV circles are integrated into the caterpillar's genome in three temporal patterns, the early, mid and late stage-integration. We further identify that three CvBV-encoded integrases are responsible for some, but not all of the virus circle integrations, indeed they mainly participate in the processes of early stage-integration. Strikingly, we find two P. xylostella retroviral integrases (PxIN1 and PxIN2) are highly induced upon wasp parasitism, and PxIN1 is crucial for integration of some other early-integrated CvBV circles, such as CvBV_04, CvBV_12 and CvBV_24, while PxIN2 is important for integration of a late-integrated CvBV circle, CvBV_21. Our data uncover a novel mechanism in which CvBV integrates into the infected host genome, not only by utilizing its own integrases, but also by recruiting host enzymes. These findings will strongly deepen our understanding of how bracoviruses regulate and integrate into their hosts.


Assuntos
DNA Viral/genética , Integrases/metabolismo , Mariposas/genética , Polydnaviridae/fisiologia , Animais , Interações Hospedeiro-Parasita/genética , Mariposas/enzimologia , Mariposas/parasitologia , Polydnaviridae/genética , Vespas/genética , Vespas/fisiologia
2.
J Virol ; 96(13): e0052422, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35678601

RESUMO

Nudiviruses are large double-stranded DNA viruses related to baculoviruses known to be endogenized in the genomes of certain parasitic wasp species. These wasp-virus associations allow the production of viral particles or virus-like particles that ensure wasp parasitism success within lepidopteran hosts. Venturia canescens is an ichneumonid wasp belonging to the Campopleginae subfamily that has endogenized nudivirus genes belonging to the Alphanudivirus genus to produce "virus-like particles" (Venturia canescens virus-like particles [VcVLPs]), which package proteic virulence factors. The main aim of this study was to determine whether alphanudivirus gene functions have been conserved following endogenization. The expression dynamics of alphanudivirus genes was monitored by a high throughput transcriptional approach, and the functional role of lef-4 and lef-8 genes predicted to encode viral RNA polymerase components was investigated by RNA interference. As described for baculovirus infections and for endogenized nudivirus genes in braconid wasp species producing bracoviruses, a transcriptional cascade involving early and late expressed alphanudivirus genes could be observed. The expression of lef-4 and lef-8 was also shown to be required for the expression of alphanudivirus late genes allowing correct particle formation. Together with previous literature, the results show that endogenization of nudiviruses in parasitoid wasps has repeatedly led to the conservation of the viral RNA polymerase function, allowing the production of viruses or viral-like particles that differ in composition but enable wasp parasitic success. IMPORTANCE This study shows that endogenization of a nudivirus genome in a Campopleginae parasitoid wasp has led to the conservation, as for endogenized nudiviruses in braconid parasitoid wasps, of the viral RNA polymerase function, required for the transcription of genes encoding viral particles involved in wasp parasitism success. We also showed for the first time that RNA interference (RNAi) can be successfully used to downregulate gene expression in this species, a model in behavioral ecology. This opens the opportunity to investigate the function of genes involved in other traits important for parasitism success, such as reproductive strategies and host choice. Fundamental data acquired on gene function in Venturia canescens are likely to be transferable to other parasitoid wasp species used in biological control programs. This study also renders possible the investigation of other nudivirus gene functions, for which little data are available.


Assuntos
Nudiviridae , Transcrição Viral , Vespas , Animais , DNA Viral/genética , Nudiviridae/genética , Proteínas do Complexo da Replicase Viral , Vespas/virologia
3.
J Gen Virol ; 103(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36282569

RESUMO

Bracoviruses and ichnoviruses are endogenous viruses of parasitic wasps that produce particles containing virulence genes expressed in host tissues and necessary for parasitism success. In the case of bracoviruses the particles are produced by conserved genes of nudiviral origin integrated permanently in the wasp genome, whereas the virulence genes can strikingly differ depending on the wasp lineage. To date most data obtained on bracoviruses concerned species from the braconid subfamily of Microgastrinae. To gain a broader view on the diversity of virulence genes we sequenced the genome packaged in the particles of Chelonus inanitus bracovirus (CiBV) produced by a wasp belonging to a different subfamily: the Cheloninae. These are egg-larval parasitoids, which means that they oviposit into the host egg and the wasp larvae then develop within the larval stages of the host. We found that most of CiBV virulence genes belong to families that are specific to Cheloninae. As other bracoviruses and ichnoviruses however, CiBV encode v-ank genes encoding truncated versions of the immune cactus/IκB factor, which suggests these proteins might play a key role in host-parasite interactions involving domesticated endogenous viruses. We found that the structures of CiBV V-ANKs are different from those previously reported. Phylogenetic analysis supports the hypothesis that they may originate from a cactus/IκB immune gene from the wasp genome acquired by the bracovirus. However, their evolutionary history is different from that shared by other V-ANKs, whose common origin probably reflects horizontal gene transfer events of virus sequences between braconid and ichneumonid wasps.


Assuntos
Polydnaviridae , Vespas , Humanos , Animais , Polydnaviridae/genética , Filogenia , Vespas/genética , Proteínas Virais/genética , Evolução Biológica
4.
J Virol ; 95(22): e0068421, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34319152

RESUMO

Bracoviruses are domesticated viruses found in parasitic wasp genomes. They are composed of genes of nudiviral origin that are involved in particle production and proviral segments containing virulence genes that are necessary for parasitism success. During particle production, proviral segments are amplified and individually packaged as DNA circles in nucleocapsids. These particles are injected by parasitic wasps into host larvae together with their eggs. Bracovirus circles of two wasp species were reported to undergo chromosomal integration in parasitized host hemocytes, through a conserved sequence named the host integration motif (HIM). Here, we used bulk Illumina sequencing to survey integrations of Cotesia typhae bracovirus circles in the DNA of its host, the maize corn borer (Sesamia nonagrioides), 7 days after parasitism. First, assembly and annotation of a high-quality genome for C. typhae enabled us to characterize 27 proviral segments clustered in proviral loci. Using these data, we characterized large numbers of chromosomal integrations (from 12 to 85 events per host haploid genome) for all 16 bracovirus circles containing a HIM. Integrations were found in four S. nonagrioides tissues and in the body of a caterpillar in which parasitism had failed. The 12 remaining circles do not integrate but are maintained at high levels in host tissues. Surprisingly, we found that HIM-mediated chromosomal integration in the wasp germ line has occurred accidentally at least six times during evolution. Overall, our study furthers our understanding of wasp-host genome interactions and supports HIM-mediated chromosomal integration as a possible mechanism of horizontal transfer from wasps to their hosts. IMPORTANCE Bracoviruses are endogenous domesticated viruses of parasitoid wasps that are injected together with wasp eggs into wasp host larvae during parasitism. Several studies have shown that some DNA circles packaged into bracovirus particles become integrated into host somatic genomes during parasitism, but the phenomenon has never been studied using nontargeted approaches. Here, we use bulk Illumina sequencing to systematically characterize and quantify bracovirus circle integrations that occur in four tissues of the Mediterranean corn borer (Sesamia nonagrioides) during parasitism by the Cotesia typhae wasp. Our analysis reveals that all circles containing a HIM integrate at substantial levels (from 12 to 85 integrations per host cell, in total) in all tissues, while other circles do not integrate. In addition to shedding new light on wasp-bracovirus-host interactions, our study supports HIM-mediated chromosomal integration of bracovirus as a possible source of wasp-to-host horizontal transfer, with long-term evolutionary consequences.


Assuntos
DNA Viral , Genoma Viral , Interações Hospedeiro-Parasita/genética , Polydnaviridae/genética , Vespas/virologia , Animais , Transferência Genética Horizontal
5.
Mol Ecol ; 31(21): 5538-5551, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36070218

RESUMO

Bracoviruses (BVs) are domesticated viruses found in braconid parasitoid wasp genomes. They are composed of domesticated genes from a nudivrius, coding viral particles in which wasp DNA circles are packaged. BVs are viewed as possible vectors of horizontal transfer of genetic material (HT) from wasp to their hosts because they are injected, together with wasp eggs, by female wasps into their host larvae, and because they undergo massive chromosomal integration in multiple host tissues. Here, we show that chromosomal integrations of the Cotesia typhae BV (CtBV) persist up to the adult stage in individuals of its natural host, Sesamia nonagrioides, that survived parasitism. However, while reproducing host adults can bear an average of nearly two CtBV integrations per haploid genome, we were unable to retrieve any of these integrations in 500 of their offspring using Illumina sequencing. This suggests either that host gametes are less targeted by CtBVs than somatic cells or that gametes bearing BV integrations are nonfunctional. We further show that CtBV can massively integrate into the chromosomes of other lepidopteran species that are not normally targeted by the wasp in the wild, including one which is divergent by at least 100 million years from the natural host. Cell entry and chromosomal integration of BVs are thus unlikely to be major factors shaping wasp host range. Together, our results shed new light on the conditions under which BV-mediated wasp-to-host HT may occur and provide information that may be helpful to evaluate the potential risks of uncontrolled HT associated with the use of parasitoid wasps as biocontrol agents.


Assuntos
Polydnaviridae , Vespas , Humanos , Animais , Feminino , Polydnaviridae/genética , Vespas/genética , Genoma , Simbiose , Cromossomos
6.
PLoS Genet ; 15(11): e1008398, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31682601

RESUMO

Galls are plant tissues whose development is induced by another organism for the inducer's benefit. 30,000 arthropod species induce galls, and in most cases the inducing effectors and target plant systems are unknown. Cynipid gall wasps are a speciose monophyletic radiation that induce structurally complex galls on oaks and other plants. We used a model system comprising the gall wasp Biorhiza pallida and the oak Quercus robur to characterise inducer and host plant gene expression at defined stages through the development of galled and ungalled plant tissues, and tested alternative hypotheses for the origin and type of galling effectors and plant metabolic pathways involved. Oak gene expression patterns diverged markedly during development of galled and normal buds. Young galls showed elevated expression of oak genes similar to legume root nodule Nod factor-induced early nodulin (ENOD) genes and developmental parallels with oak buds. In contrast, mature galls showed substantially different patterns of gene expression to mature leaves. While most oak transcripts could be functionally annotated, many gall wasp transcripts of interest were novel. We found no evidence in the gall wasp for involvement of third-party symbionts in gall induction, for effector delivery using virus-like-particles, or for gallwasp expression of genes coding for plant hormones. Many differentially and highly expressed genes in young larvae encoded secretory peptides, which we hypothesise are effector proteins exported to plant tissues. Specifically, we propose that host arabinogalactan proteins and gall wasp chitinases interact in young galls to generate a somatic embryogenesis-like process in oak tissues surrounding the gall wasp larvae. Gall wasp larvae also expressed genes encoding multiple plant cell wall degrading enzymes (PCWDEs). These have functional orthologues in other gall inducing cynipids but not in figitid parasitoid sister groups, suggesting that they may be evolutionary innovations associated with cynipid gall induction.


Assuntos
Interações Hospedeiro-Parasita/genética , Tumores de Planta/genética , Quercus/genética , Vespas/genética , Animais , Regulação da Expressão Gênica de Plantas/genética , Genômica , Larva/genética , Redes e Vias Metabólicas/genética , Fenótipo , Reguladores de Crescimento de Plantas/genética , Folhas de Planta , Tumores de Planta/parasitologia , Quercus/parasitologia , Vespas/patogenicidade
7.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29769342

RESUMO

Polydnaviruses (PDVs) are essential for the parasitism success of tens of thousands of species of parasitoid wasps. PDVs are present in wasp genomes as proviruses, which serve as the template for the production of double-stranded circular viral DNA carrying virulence genes that are injected into lepidopteran hosts. PDV circles do not contain genes coding for particle production, thereby impeding viral replication in caterpillar hosts during parasitism. Here, we investigated the fate of PDV circles of Cotesia congregata bracovirus during parasitism of the tobacco hornworm, Manduca sexta, by the wasp Cotesia congregata Sequences sharing similarities with host integration motifs (HIMs) of Microplitis demolitor bracovirus (MdBV) circles involved in integration into DNA could be identified in 12 CcBV circles, which encode PTP and VANK gene families involved in host immune disruption. A PCR approach performed on a subset of these circles indicated that they persisted in parasitized M. sexta hemocytes as linear forms, possibly integrated in host DNA. Furthermore, by using a primer extension capture method based on these HIMs and high-throughput sequencing, we could show that 8 out of 9 circles tested were integrated in M. sexta hemocyte genomic DNA and that integration had occurred specifically using the HIM, indicating that an HIM-mediated specific mechanism was involved in their integration. Investigation of BV circle insertion sites at the genome scale revealed that certain genomic regions appeared to be enriched in BV insertions, but no specific M. sexta target site could be identified.IMPORTANCE The identification of a specific and efficient integration mechanism shared by several bracovirus species opens the question of its role in braconid parasitoid wasp parasitism success. Indeed, results obtained here show massive integration of bracovirus DNA in somatic immune cells at each parasitism event of a caterpillar host. Given that bracoviruses do not replicate in infected cells, integration of viral sequences in host DNA might allow the production of PTP and VANK virulence proteins within newly dividing cells of caterpillar hosts that continue to develop during parasitism. Furthermore, this integration process could serve as a basis to understand how PDVs mediate the recently identified gene flux between parasitoid wasps and Lepidoptera and the frequency of these horizontal transfer events in nature.


Assuntos
DNA Viral/metabolismo , Hemócitos/virologia , Manduca/virologia , Polydnaviridae/fisiologia , Proteínas Virais/metabolismo , Integração Viral/fisiologia , Animais , DNA Viral/genética , Hemócitos/metabolismo , Manduca/genética , Proteínas Virais/genética
8.
PLoS Genet ; 11(9): e1005470, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26379286

RESUMO

Bracoviruses are symbiotic viruses associated with tens of thousands of species of parasitic wasps that develop within the body of lepidopteran hosts and that collectively parasitize caterpillars of virtually every lepidopteran species. Viral particles are produced in the wasp ovaries and injected into host larvae with the wasp eggs. Once in the host body, the viral DNA circles enclosed in the particles integrate into lepidopteran host cell DNA. Here we show that bracovirus DNA sequences have been inserted repeatedly into lepidopteran genomes, indicating this viral DNA can also enter germline cells. The original mode of Horizontal Gene Transfer (HGT) unveiled here is based on the integrative properties of an endogenous virus that has evolved as a gene transfer agent within parasitic wasp genomes for ≈100 million years. Among the bracovirus genes thus transferred, a phylogenetic analysis indicated that those encoding C-type-lectins most likely originated from the wasp gene set, showing that a bracovirus-mediated gene flux exists between the 2 insect orders Hymenoptera and Lepidoptera. Furthermore, the acquisition of bracovirus sequences that can be expressed by Lepidoptera has resulted in the domestication of several genes that could result in adaptive advantages for the host. Indeed, functional analyses suggest that two of the acquired genes could have a protective role against a common pathogen in the field, baculovirus. From these results, we hypothesize that bracovirus-mediated HGT has played an important role in the evolutionary arms race between Lepidoptera and their pathogens.


Assuntos
Genes de Insetos , Lepidópteros/parasitologia , Polydnaviridae/fisiologia , Vespas/genética , Animais , Sequência de Bases , DNA Viral , Dados de Sequência Molecular , Polydnaviridae/genética , Spodoptera/genética
9.
Ann Vasc Surg ; 43: 127-133, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28390913

RESUMO

BACKGROUND: The aim of the study was to assess the clinical utility of strict CT scan surveillance after endovascular abdominal aneurysm repair (EVAR) and evaluate whether the anatomy of abdominal aortic aneurysm (AAA) neck (favorable/hostile) influences regular imaging control. METHODS: A retrospective study of AAA patients who underwent EVAR with aortobi-iliac endoprostheses during 2006-2013 was conducted. Exclusion criteria included other types of devices. Variables analyzed were technical and clinical success, morbimortality, complications (such as endoleaks, sac enlargement), reinterventions, reintervention-free survival, and survival rate. Preoperative CT scans were performed and repeated at 1, 6 (in selective cases), 12, and 24 months postoperatively. Patients were divided into two groups according to preoperative anatomic characteristics: group I (favorable neck) and group II (hostile neck: angle > 60°, length < 15 mm, diameter > 28 mm, and calcification or circumference thrombus ≥50%). RESULTS: A total of 127 patients with AAA (96.8% male) were included in the study. The mean age of the patients was 75.9 years (range: 51-90 years). The mean AAA diameter was 62.1 mm. Hostile neck was found in 52 patients (40.9%). The technical and clinical success rate was 100% and 30-day mortality was 0.8%. The reintervention-free survival rate was 97.6%, 96.1%, and 93.7% and the survival rate was 97.6%, 96.9%, and 91.3%, during follow-up at 6, 12, and 24 months, respectively. Accumulated complications in proximal sealing occurred in 0%, 0%, and 1.6% in group I and 1.9%, 6.1%, and 7.7% in group II at 1, 12, and 24 months, respectively. Type II endoleaks occurred in 24.3%, 14.3%, and 11.4% in group I and 9.8%, 6.3%, and 6.8% in group II at 1, 12, and 24 months, respectively. No increased diameter was detected at 6 and 12 months. No differences were observed in reinterventions and mortality rate depending on anatomy. CONCLUSIONS: CT scans performed at 6 and 12 months postoperatively did not detect complications or need for reintervention in patients with favorable necks, even in the presence of endoleaks type II, and could therefore be omitted. Hostile necks may compromise proximal sealing and require regular imaging follow-ups.


Assuntos
Aorta Abdominal/cirurgia , Aneurisma da Aorta Abdominal/cirurgia , Aortografia/métodos , Implante de Prótese Vascular , Angiografia por Tomografia Computadorizada , Procedimentos Endovasculares , Complicações Pós-Operatórias/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/mortalidade , Implante de Prótese Vascular/efeitos adversos , Implante de Prótese Vascular/mortalidade , Intervalo Livre de Doença , Procedimentos Endovasculares/efeitos adversos , Procedimentos Endovasculares/mortalidade , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/terapia , Estudos Retrospectivos , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
10.
J Virol ; 88(16): 8795-812, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24872581

RESUMO

UNLABELLED: Bracoviruses (BVs) from the Polydnaviridae family are symbiotic viruses used as biological weapons by parasitoid wasps to manipulate lepidopteran host physiology and induce parasitism success. BV particles are produced by wasp ovaries and injected along with the eggs into the caterpillar host body, where viral gene expression is necessary for wasp development. Recent sequencing of the proviral genome of Cotesia congregata BV (CcBV) identified 222 predicted virulence genes present on 35 proviral segments integrated into the wasp genome. To date, the expressions of only a few selected candidate virulence genes have been studied in the caterpillar host, and we lacked a global vision of viral gene expression. In this study, a large-scale transcriptomic analysis by 454 sequencing of two immune tissues (fat body and hemocytes) of parasitized Manduca sexta caterpillar hosts allowed the detection of expression of 88 CcBV genes expressed 24 h after the onset of parasitism. We linked the expression profiles of these genes to several factors, showing that different regulatory mechanisms control viral gene expression in the host. These factors include the presence of signal peptides in encoded proteins, diversification of promoter regions, and, more surprisingly, gene position on the proviral genome. Indeed, most genes for which expression could be detected are localized in particular proviral regions globally producing higher numbers of circles. Moreover, this polydnavirus (PDV) transcriptomic analysis also reveals that a majority of CcBV genes possess at least one intron and an arthropod transcription start site, consistent with an insect origin of these virulence genes. IMPORTANCE: Bracoviruses (BVs) are symbiotic polydnaviruses used by parasitoid wasps to manipulate lepidopteran host physiology, ensuring wasp offspring survival. To date, the expressions of only a few selected candidate BV virulence genes have been studied in caterpillar hosts. We performed a large-scale analysis of BV gene expression in two immune tissues of Manduca sexta caterpillars parasitized by Cotesia congregata wasps. Genes for which expression could be detected corresponded to genes localized in particular regions of the viral genome globally producing higher numbers of circles. Our study thus brings an original global vision of viral gene expression and paves the way to the determination of the regulatory mechanisms enabling the expression of BV genes in targeted organisms, such as major insect pests. In addition, we identify sequence features suggesting that most BV virulence genes were acquired from insect genomes.


Assuntos
Expressão Gênica/genética , Genes Virais/genética , Genoma Viral/genética , Polydnaviridae/genética , Vespas/genética , Vespas/virologia , Animais , Perfilação da Expressão Gênica/métodos , Manduca/genética , Manduca/virologia , Regiões Promotoras Genéticas/genética
11.
BMC Evol Biol ; 12: 253, 2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23270369

RESUMO

BACKGROUND: Gene duplications have been proposed to be the main mechanism involved in genome evolution and in acquisition of new functions. Polydnaviruses (PDVs), symbiotic viruses associated with parasitoid wasps, are ideal model systems to study mechanisms of gene duplications given that PDV genomes consist of virulence genes organized into multigene families. In these systems the viral genome is integrated in a wasp chromosome as a provirus and virus particles containing circular double-stranded DNA are injected into the parasitoids' hosts and are essential for parasitism success. The viral virulence factors, organized in gene families, are required collectively to induce host immune suppression and developmental arrest. The gene family which encodes protein tyrosine phosphatases (PTPs) has undergone spectacular expansion in several PDV genomes with up to 42 genes. RESULTS: Here, we present strong indications that PTP gene family expansion occurred via classical mechanisms: by duplication of large segments of the chromosomally integrated form of the virus sequences (segmental duplication), by tandem duplications within this form and by dispersed duplications. We also propose a novel duplication mechanism specific to PDVs that involves viral circle reintegration into the wasp genome. The PTP copies produced were shown to undergo conservative evolution along with episodes of adaptive evolution. In particular recently produced copies have undergone positive selection in sites most likely involved in defining substrate selectivity. CONCLUSION: The results provide evidence about the dynamic nature of polydnavirus proviral genomes. Classical and PDV-specific duplication mechanisms have been involved in the production of new gene copies. Selection pressures associated with antagonistic interactions with parasitized hosts have shaped these genes used to manipulate lepidopteran physiology with evidence for positive selection involved in adaptation to host targets.


Assuntos
Evolução Molecular , Duplicação Gênica , Polydnaviridae/enzimologia , Polydnaviridae/genética , Proteínas Tirosina Fosfatases/genética , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Filogenia , Polydnaviridae/metabolismo , Proteínas Tirosina Fosfatases/química , Alinhamento de Sequência , Vespas/virologia
12.
Curr Opin Insect Sci ; 50: 100876, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35065285

RESUMO

The piRNA system controls transposable element (TE) mobility by transcriptional gene silencing and post-transcriptional gene silencing. Dispersed in insect genomes, piRNA clusters contain TE copies, from which they produce piRNAs (specific small RNAs). These piRNAs can both target the nascent transcripts produced by active TE copies and directly repress them by heterochromatinization. They can also target mature transcripts and cleave them following amplification by the so-called 'ping-pong' loop mechanism. Moreover, piRNA clusters contain endogenous viral elements (EVEs), from which they produce piRNAs. The current idea is that these piRNAs could participate in the antiviral response against exogenous viral infection. In this review, we show that among insects, to date, this antiviral response by the piRNA system appears mainly restricted to mosquitoes, but this could be due to the focus of most studies on arboviruses.


Assuntos
Elementos de DNA Transponíveis , Inativação Gênica , Animais , Antivirais , Insetos/genética , RNA Interferente Pequeno/genética
13.
Commun Biol ; 4(1): 104, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483589

RESUMO

Endogenous viruses form an important proportion of eukaryote genomes and a source of novel functions. How large DNA viruses integrated into a genome evolve when they confer a benefit to their host, however, remains unknown. Bracoviruses are essential for the parasitism success of parasitoid wasps, into whose genomes they integrated ~103 million years ago. Here we show, from the assembly of a parasitoid wasp genome at a chromosomal scale, that bracovirus genes colonized all ten chromosomes of Cotesia congregata. Most form clusters of genes involved in particle production or parasitism success. Genomic comparison with another wasp, Microplitis demolitor, revealed that these clusters were already established ~53 mya and thus belong to remarkably stable genomic structures, the architectures of which are evolutionary constrained. Transcriptomic analyses highlight temporal synchronization of viral gene expression without resulting in immune gene induction, suggesting that no conflicts remain between ancient symbiotic partners when benefits to them converge.


Assuntos
Evolução Biológica , Cromossomos de Insetos , Genoma de Inseto , Polydnaviridae/genética , Vespas/genética , Animais , Sequência de Bases , Sequência Conservada , Nudiviridae/genética , Receptores Odorantes/genética , Olfato , Simbiose , Sintenia , Vespas/virologia
14.
Proc Biol Sci ; 277(1692): 2311-9, 2010 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-20356892

RESUMO

The life cycles of many organisms are constrained by the seasonality of resources. This is particularly true for leaf-mining herbivorous insects that use deciduous leaves to fuel growth and reproduction even beyond leaf fall. Our results suggest that an intimate association with bacterial endosymbionts might be their way of coping with nutritional constraints to ensure successful development in an otherwise senescent environment. We show that the phytophagous leaf-mining moth Phyllonorycter blancardella (Lepidoptera) relies on bacterial endosymbionts, most likely Wolbachia, to manipulate the physiology of its host plant resulting in the 'green-island' phenotype--photosynthetically active green patches in otherwise senescent leaves--and to increase its fitness. Curing leaf-miners of their symbiotic partner resulted in the absence of green-island formation on leaves, increased compensatory larval feeding and higher insect mortality. Our results suggest that bacteria impact green-island induction through manipulation of cytokinin levels. This is the first time, to our knowledge, that insect bacterial endosymbionts have been associated with plant physiology.


Assuntos
Lepidópteros/microbiologia , Malus , Doenças das Plantas/parasitologia , Folhas de Planta/parasitologia , Simbiose , Wolbachia/crescimento & desenvolvimento , Animais , Antibacterianos/farmacologia , Sequência de Bases , Citocininas/análise , DNA Bacteriano/química , DNA Bacteriano/genética , Feminino , Masculino , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Estatísticas não Paramétricas , Wolbachia/genética
15.
Plant Sci ; 294: 110468, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32234233

RESUMO

Successful plant colonization by parasites requires the circumvention of host defenses, and sometimes a reprogramming of host metabolism, mediated by effector molecules delivered into the host. Using transcriptomic and enzymatic approaches, we characterized salivary glands and saliva of Phloeomyzus passerinii, an aphid exhibiting an atypical feeding strategy. Plant responses to salivary extracts of P. passerinii and Myzus persicae were assessed with poplar protoplasts of a susceptible and a resistant genotype, and in a heterologous Arabidopsis system. We predict that P. passerinii secretes a highly peculiar saliva containing effectors potentially interfering with host defenses, biotic stress signaling and plant metabolism, notably phosphatidylinositol phosphate kinases which seemed specific to P. passerinii. Gene expression profiles indicated that salivary extracts of M. persicae markedly affected host defenses and biotic stress signaling, while salivary extracts of P. passerinii induced only weak responses. The effector-triggered susceptibility was characterized by downregulations of genes involved in cytokinin signaling and auxin homeostasis. This suggests that P. passerinii induces an intracellular accumulation of auxin in susceptible host genotypes, which is supported by histochemical assays in Arabidopsis. This might in turn affect biotic stress signaling and contribute to host tissue manipulation by the aphid.


Assuntos
Afídeos/metabolismo , Populus/metabolismo , Animais , Citocininas/metabolismo , Genótipo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma
16.
BMC Biol ; 6: 38, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18783611

RESUMO

BACKGROUND: In pathogens, certain genes encoding proteins that directly interact with host defences coevolve with their host and are subject to positive selection. In the lepidopteran host-wasp parasitoid system, one of the most original strategies developed by the wasps to defeat host defences is the injection of a symbiotic polydnavirus at the same time as the wasp eggs. The virus is essential for wasp parasitism success since viral gene expression alters the immune system and development of the host. As a wasp mutualist symbiont, the virus is expected to exhibit a reduction in genome complexity and evolve under wasp phyletic constraints. However, as a lepidopteran host pathogenic symbiont, the virus is likely undergoing strong selective pressures for the acquisition of new functions by gene acquisition or duplication. To understand the constraints imposed by this particular system on virus evolution, we studied a polydnavirus gene family encoding cyteine protease inhibitors of the cystatin superfamily. RESULTS: We show that cystatins are the first bracovirus genes proven to be subject to strong positive selection within a host-parasitoid system. A generated three-dimensional model of Cotesia congregata bracovirus cystatin 1 provides a powerful framework to position positively selected residues and reveal that they are concentrated in the vicinity of actives sites which interact with cysteine proteases directly. In addition, phylogenetic analyses reveal two different cystatin forms which evolved under different selective constraints and are characterized by independent adaptive duplication events. CONCLUSION: Positive selection acts to maintain cystatin gene duplications and induces directional divergence presumably to ensure the presence of efficient and adapted cystatin forms. Directional selection has acted on key cystatin active sites, suggesting that cystatins coevolve with their host target. We can strongly suggest that cystatins constitute major virulence factors, as was already proposed in previous functional studies.


Assuntos
Cistatinas/genética , Evolução Molecular , Interações Hospedeiro-Parasita , Polydnaviridae/química , Proteínas Virais/genética , Vespas/virologia , Animais , Cistatinas/química , Cistatinas/imunologia , Inibidores de Cisteína Proteinase/genética , Inibidores de Cisteína Proteinase/metabolismo , Genes Virais , Lepidópteros/imunologia , Lepidópteros/parasitologia , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Seleção Genética , Simbiose , Proteínas Virais/química , Proteínas Virais/imunologia , Vespas/genética , Vespas/fisiologia
17.
Front Physiol ; 10: 926, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396099

RESUMO

To gain insight into wasp factors that might be involved in the initial induction of galls on woody plants, we performed high throughput (454) transcriptome analysis of ovaries and venom glands of two cynipid gall wasps, Biorhiza pallida and Diplolepis rosae, inducing galls on oak and rose, respectively. De novo assembled and annotated contigs were compared to sequences from phylogenetically related parasitoid wasps. The relative expression levels of contigs were estimated to identify the most expressed gene sequences in each tissue. We identify for the first time a set of maternally expressed gall wasp proteins potentially involved in the interaction with the plant. Some genes highly expressed in venom glands and ovaries may act to suppress early plant defense signaling. We also identify gall wasp cellulases that could be involved in observed local lysis of plant tissue following oviposition, and which may have been acquired from bacteria by horizontal gene transfer. We find no evidence of virus-related gene expression, in contrast to many non-cynipid parasitoid wasps. By exploring gall wasp effectors, this study is a first step toward understanding the molecular mechanisms underlying cynipid gall induction in woody plants, and the recent sequencing of oak and rose genomes will enable study of plant responses to these factors.

18.
Curr Opin Virol ; 25: 41-48, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28728099

RESUMO

In a remarkable example of convergent evolution, several parasitic wasp lineages have independently captured and maintained complex DNA virus machineries, used to transfer virulence factors. Parasitic wasps, which develop inside the larvae of their insect hosts, may inject Polydnaviruses (PDVs) or Virus-Like particles (VLPs), derived from the recurrent endogenization of several large DNA viruses. PDVs evolved from the domestication in braconid and ichneumonid wasps of viruses from different families and function as gene transfer agents. In contrast, the independent domestication of nudiviruses led to the evolution of both PDV and VLP strategies. In Venturia canescens, the endogenous nudivirus has lost the ability to encapsidate DNA, instead VLPs cargo virulence molecules of wasp origin to the parasitized host.


Assuntos
Evolução Molecular , Polydnaviridae/genética , Polydnaviridae/fisiologia , Vespas/virologia , Animais , DNA Viral , Genoma Viral , Mariposas/parasitologia , Vírion/genética , Vírion/fisiologia , Virulência , Fatores de Virulência/genética , Vespas/patogenicidade , Vespas/fisiologia
19.
Genes (Basel) ; 8(11)2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29120392

RESUMO

Transfer of DNA sequences between species regardless of their evolutionary distance is very common in bacteria, but evidence that horizontal gene transfer (HGT) also occurs in multicellular organisms has been accumulating in the past few years. The actual extent of this phenomenon is underestimated due to frequent sequence filtering of "alien" DNA before genome assembly. However, recent studies based on genome sequencing have revealed, and experimentally verified, the presence of foreign DNA sequences in the genetic material of several species of Lepidoptera. Large DNA viruses, such as baculoviruses and the symbiotic viruses of parasitic wasps (bracoviruses), have the potential to mediate these transfers in Lepidoptera. In particular, using ultra-deep sequencing, newly integrated transposons have been identified within baculovirus genomes. Bacterial genes have also been acquired by genomes of Lepidoptera, as in other insects and nematodes. In addition, insertions of bracovirus sequences were present in the genomes of certain moth and butterfly lineages, that were likely corresponding to rearrangements of ancient integrations. The viral genes present in these sequences, sometimes of hymenopteran origin, have been co-opted by lepidopteran species to confer some protection against pathogens.

20.
Insect Sci ; 24(6): 1065-1078, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28636152

RESUMO

Several herbivorous insects and plant-associated microorganisms control the phytohormonal balance, thus enabling them to successfully exploit the plant by inhibiting plant defenses and withdrawing plant resources for their own benefit. The leaf-mining moth Phyllonorycter blancardella modifies the cytokinin (CK) profile of mined leaf-tissues, and the insect symbiotic bacteria Wolbachia is involved in the plant manipulation to the benefit of the insect host. To gain a deeper understanding into the possible origin and dynamics of CKs, we conducted an extensive characterization of CKs in larvae and in infected apple leaves. Our results show the enhanced CK levels in mines, both on green and yellow leaves, allowing insects to control their nutritional supply under fluctuating environmental conditions. The spatial distribution of CKs within the mined leaves shows that hormone manipulation is strictly limited to the mine suggesting the absence of CK translocation from distant leaf areas toward the insect feeding site. Mass spectrometry analyses reveal that major CK types accumulating in mines and larvae are similar to what is observed for most gall-inducers, suggesting that strategies underlying the plant manipulation may be shared between herbivorous insects with distinct life histories. Results further show that CKs are detected in the highest levels in larvae, reinforcing our hypothesis that CKs accumulating in the mines originate from the insect itself. Presence of bacteria-specific methylthio-CKs is consistent with previous results suggesting that insect bacterial symbionts contribute to the observed phenotype. Our study provides key findings toward the understanding of molecular mechanisms underlying this intricate plant-insect-microbe interaction.


Assuntos
Citocininas/metabolismo , Interações Hospedeiro-Parasita , Malus/metabolismo , Mariposas/fisiologia , Animais , Larva/fisiologia , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA