RESUMO
UV-B radiation regulates numerous morphogenic, biochemical and physiological responses in plants, and can stimulate some responses typically associated with other abiotic and biotic stimuli, including invertebrate herbivory. Removal of UV-B from the growing environment of various plant species has been found to increase their susceptibility to consumption by invertebrate pests, however, to date, little research has been conducted to investigate the effects of UV-B on crop susceptibility to field pests. Here, we report findings from a multi-omic and genetic-based study investigating the mechanisms of UV-B-stimulated resistance of the crop, Brassica napus (oilseed rape), to herbivory from an economically important lepidopteran specialist of the Brassicaceae, Plutella xylostella (diamondback moth). The UV-B photoreceptor, UV RESISTANCE LOCUS 8 (UVR8), was not found to mediate resistance to this pest. RNA-Seq and untargeted metabolomics identified components of the sinapate/lignin biosynthetic pathway that were similarly regulated by UV-B and herbivory. Arabidopsis mutants in genes encoding two enzymes in the sinapate/lignin biosynthetic pathway, CAFFEATE O-METHYLTRANSFERASE 1 (COMT1) and ELICITOR-ACTIVATED GENE 3-2 (ELI3-2), retained UV-B-mediated resistance to P. xylostella herbivory. However, the overexpression of B. napus COMT1 in Arabidopsis further reduced plant susceptibility to P. xylostella herbivory in a UV-B-dependent manner. These findings demonstrate that overexpression of a component of the sinapate/lignin biosynthetic pathway in a member of the Brassicaceae can enhance UV-B-stimulated resistance to herbivory from P. xylostella.
Assuntos
Arabidopsis , Brassica napus , Mariposas , Animais , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Brassica napus/genética , Herbivoria , Lignina , Mariposas/fisiologia , PlantasRESUMO
The regulation of molecular farming is a complex topic because plants and plant-based systems are relative newcomers among the many production platforms available for recombinant proteins. The regulations specific for different types of product (human/veterinary pharmaceuticals and medical devices, cosmetics, diagnostics, and research reagents) must therefore be overlaid with the regulations governing hitherto unfamiliar production platforms, and this must be achieved in different jurisdictions that handle genetically modified organisms (and genetically modified plants in particular) in very different ways. This chapter uses examples of different product types and production methods in three different jurisdictions (the USA, the EU, and Canada) to demonstrate some of the challenges facing the regulatory authorities.
Assuntos
Agricultura Molecular , Drogas Veterinárias , Canadá , Humanos , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes/genéticaRESUMO
New plant breeding technologies, such as genome editing, are enabling new crop varieties to be developed far quicker and with greater precision and scope than achievable using conventional methods. These advances could help farmers address the challenges of climate change, sustainability, and global food security. However, despite their potential, the uptake of these new technologies has been slowed down due to the uncertainty associated with the regulation of genome edited crops. For many European consumers, their view of new breeding technologies is influenced by many factors. Those who have never faced a major food crisis may not sufficiently appreciate the challenges posed by a projected rise of 2 billion in the human population by 2050. In addition, consumers with a regular and plentiful supply of food may not have to consider how their food is produced, or appreciate the challenges EU farmers are already facing to meet future demand. Misleading online articles, questioning the safety and ethics of these "new" biotech foods, can also lead consumers to be reluctant to accept them. Consequently, Europe's mixed view on biotech crops may also be hindering their adoption in countries who have even more to gain from the technology. In this review, we discuss the current data on global and EU GM crop adoption and the potential impact a new wave of crop development may have for agriculture. We reflect on how the EU has viewed GM crops, and we consider the future of both genetic modification (GM) and genome editing (GE) in the EU. We explore lessons learnt from the adoption of GM crops and examine the potential impact the recent decision not to exempt genome edited crops from the EU GMO Directive, will have on EU farmers, scientists, consumers, trading countries, and the rest of the world.