RESUMO
Metformin is one of the most commonly used drugs for type 2 diabetes mellitus. In addition to its anti-diabetic property, evidence suggests more potential applications for metformin, such as antiaging, cellular protection, and anti-inflammation. Studies have reported that metformin activates pathways with anti-inflammatory effects, enhances the integrity of gut epithelial tight junctions, and promotes a healthy gut microbiome. These actions contribute to the protective effect of metformin against gastrointestinal (GI) tract injury. However, whether metformin plays a protective role in psychological-stress-associated GI tract injury remains elusive. We aim to elucidate the potential protective effect of metformin on the GI system and develop an effective intervention strategy to counteract GI injury induced by acute psychological stress. By monitoring the levels of GI-nonabsorbable Evans blue dye in the bloodstream, we assessed the progression of GI injury in live mice. Our findings demonstrate that the administration of metformin effectively mitigated GI leakage caused by psychological stress. The GI protective effect of metformin is more potent when used on wild-type mice than on activating-transcription-factor 3 (ATF3)-deficient (ATF3-/-) mice. As such, metformin-mediated rescue was conducted in an ATF3-dependent manner. In addition, metformin-mediated protection is associated with the induction of stress-induced GI mRNA expressions of the stress-induced genes ATF3 and AMP-activated protein kinase. Furthermore, metformin treatment-mediated protection of CD326+ GI epithelial cells against stress-induced apoptotic cell death was observed in wild-type but not in ATF3-/- mice. These results suggest that metformin plays a protective role in stress-induced GI injury and that ATF3 is an essential regulator for metformin-mediated rescue of stress-induced GI tract injury.
Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Camundongos , Animais , Fator 3 Ativador da Transcrição/genética , Metformina/farmacologia , Células Epiteliais/metabolismo , Proteínas Quinases Ativadas por AMPRESUMO
Psychological stress is widely acknowledged as a major contributor to immunosuppression, rendering individuals more susceptible to various diseases. The complex interplay between the nervous, endocrine, and immune systems underlies stress-induced immunosuppression. However, the underlying mechanisms of psychological-stress-induced immunosuppression remain unclear. In this study, we utilized a restraint stress mouse model known for its suitability in investigating physiological regulations during psychological stress. Comparing it with cold exposure, we observed markedly elevated levels of stress hormones corticosterone and cortisol in the plasma of mice subjected to restraint stress. Furthermore, restraint-stress-induced immunosuppression differed from the intravenous immunoglobulin-like immunosuppression observed in cold exposure, with restraint stress leading to increased macrophage cell death in the spleen. Suppression of pyroptosis through treatments of inflammasome inhibitors markedly ameliorated restraint-stress-induced spleen infiltration and pyroptosis cell death of macrophages in mice. These findings suggest that the macrophage pyroptosis associated with restraint stress may contribute to its immunosuppressive effects. These insights have implications for the development of treatments targeting stress-induced immunosuppression, emphasizing the need for further investigation into the underlying mechanisms.
Assuntos
Terapia de Imunossupressão , Piroptose , Animais , Camundongos , Morte Celular , Macrófagos , Restrição FísicaRESUMO
Psychological stress is associated with increased risk of gastrointestinal (GI) tract diseases. Evidence indicated that platelets facilitate GI tissue repair in intestinal anastomosis models. However, whether platelets are involved in native mechanism of the rescue of stress-induced GI injury for maintaining the GI homeostasis remains elusive. Because P-selectin-deficient (Selp-/-) mice displayed higher stress-induced GI injury compared to the wild-type (Selp+/+) mice, and P-selectin is specifically expressed in platelets, we hypothesize that P-selectin-expressing platelets play a protective role in the rescue of stress-induced GI injury. Our goal is to clarify the putative protective role of platelets in a GI system, thereby develop a feasible intervention strategy, such as platelet transfer, to overcome stress-induced GI injury. Through monitoring the plasma levels of GI-nonabsorbable Evans blue dye to reveal the progression course of GI injury in live mice, we found that intravenous treatments of purified platelets ameliorated stress-induced GI leakage. The transfer of platelets from wild-type mice was more potent than from Selp-/- mice in the rescue of stress-induced-GI leakage in the recipients. As such, platelet transfer-mediated rescue was conducted in a P-selectin dependent manner. Additionally, platelet-mediated protection is associated with corrections of stress-induced aberrant GI mRNA expressions, including tight junctions claudin 3 and occludin, as well as stress-induced genes activating transcription factor 3 and AMP-activated protein kinase, after the transfer of wild-type platelets into wild-type and Selp-/- mice. Furthermore, the stress-induced apoptosis of CD326+ GI epithelial cells was rescued by the transfer of wild type, but not P-selectin-deficient platelets. These results suggest that platelet plays a protective role for maintaining the GI homeostasis during stress in vivo, and that P-selectin is a molecular target for managing stress-induced GI tract injury.
Assuntos
Proteínas Quinases Ativadas por AMP , Fator 3 Ativador da Transcrição , Proteínas Quinases Ativadas por AMP/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Animais , Plaquetas/metabolismo , Claudina-3/metabolismo , Azul Evans , Camundongos , Camundongos Endogâmicos C57BL , Ocludina/metabolismo , RNA Mensageiro/metabolismoRESUMO
BACKGROUND: Solar ultraviolet (UV) radiation causes various deleterious effects, and UV blockage is recommended for avoiding sunburn. Nanosized titanium dioxide and zinc oxide offer effective protection and enhance cosmetic appearance but entail health concerns regarding their photocatalytic activity, which generates reactive oxygen species. These concerns are absent in nanodiamonds (NDs). Among the UV wavelengths in sunlight, UVB irradiation primarily threatens human health. RESULTS: The efficacy and safety of NDs in UVB protection were evaluated using cell cultures and mouse models. We determined that 2 mg/cm(2) of NDs efficiently reduced over 95% of UVB radiation. Direct UVB exposure caused cell death of cultured keratinocyte, fibroblasts and skin damage in mice. By contrast, ND-shielding significantly protected the aforementioned pathogenic alterations in both cell cultures and mouse models. CONCLUSIONS: NDs are feasible and safe materials for preventing UVB-induced skin damage.
Assuntos
Nanodiamantes , Protetores contra Radiação/farmacologia , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Animais , Células Cultivadas , Dermatite/etiologia , Dermatite/prevenção & controle , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Humanos , Hiperplasia/tratamento farmacológico , Hiperplasia/patologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Leucócitos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Protetores contra Radiação/química , Radiodermite/etiologia , Radiodermite/prevenção & controle , Pele/patologia , Titânio/farmacologia , Raios Ultravioleta/efeitos adversos , Óxido de Zinco/farmacologiaRESUMO
Photodynamic therapy (PDT) is a well-established cancer treatment method that employs light to generate reactive oxygen species (ROS) causing oxidative damage to cancer cells. Nevertheless, PDT encounters challenges due to its oxygen-dependent nature, which makes it less effective in hypoxic tumor environments. To address this issue, we have developed a novel nanocomposite known as AuNC@BBR@Ghost. This nanocomposite combines the advantageous features of erythrocyte ghost membranes, the photoresponsive properties of gold nanoclusters (AuNC) and the anticancer characteristics of Berberine (BBR) for cancer treatment. Our synthesized AuNC efficiently produce ROS, with a 25% increase in efficiency when exposed to near-infrared (NIR) irradiation. By harnessing the oxygen-carrying capacity of erythrocyte ghost cells, AuNC@BBR@Ghost demonstrates a significant improvement in ROS generation, achieving an 80% efficiency. Furthermore, the AuNC exhibit tunable emission wavelengths due to their excellent fluorescent properties. In normoxic conditions, treatment of A549 lung carcinoma cells with AuNC@BBR@Ghost followed by exposure to 808 nm NIR irradiation results in a notable increase in intracellular ROS levels, accelerating cell death. In hypoxic conditions, when A549 cells were treated with AuNC@BBR@Ghost, the erythrocyte ghost acted as an oxygen supplement due to the residual hemoglobin, alleviating hypoxia and enhancing the nanocomposite's sensitivity to PDT treatment. Thus, the AuNC@BBR@Ghost nanocomposite achieves an improved effect by combining the advantageous properties of its individual components, resulting in enhanced ROS generation and adaptability to hypoxic conditions. This innovative approach successfully overcomes PDT's limitations, making AuNC@BBR@Ghost a promising nanotheranostic agent with significant potential for advanced cancer therapy.
RESUMO
Nanodiamond (ND) has been developed as a carrier to conduct various in vivo diagnostic and therapeutic uses. Safety is one of the major considerations, while the hemocompatibility of ND is not clearly addressed. Here we found that, compared to the other sizes of ND with relatively inert properties, treatments of 50 nm ND induced stronger platelet aggregation, platelet pyroptosis, apoptosis and thrombocytopenia in mice. Blockage treatments of soluble P-selectin, reactive oxygen species (ROS), and Nlrp3 inflammasome inhibitors markedly suppressed such adverse effects, suggesting ND-induced platelet activation and pyroptosis involves surface P-selectin-mediated enhancement of mitochondrial superoxide levels and Nlrp3 inflammasome activation. In addition, challenges of NDs induced less platelet pyroptosis and displayed less thrombocytopenia in P-selectin (Selp-/- ), Nlrp3 (Nlrp3-/- ) and caspase-1 (Casp1-/- ) mutants, as compared to the wild type mice. Blockers of P-selectin, ROS, and Nlrp3 inflammasome pathways could be considered as antidotes for ND induced platelet activation and thrombocytopenia.
Assuntos
Nanodiamantes , Trombocitopenia , Animais , Apoptose/fisiologia , Caspase 1/metabolismo , Inflamassomos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Selectina-P , Agregação Plaquetária , Piroptose , Espécies Reativas de Oxigênio/metabolismoRESUMO
Titanium dioxide (TiO2) is one of the most common compounds on Earth, and it is used in natural forms or engineered bulks or nanoparticles (NPs) with increasing rates. However, the effect of TiO2 NPs on plants remains controversial. Previous studies demonstrated that TiO2 NPs are toxic to plants, because the photocatalytic property of TiO2 produces biohazardous reactive oxygen species. In contrast, another line of evidence suggested that TiO2 NPs are beneficial to plant growth. To verify this argument, in this study, we used seed germination of amaranth and cruciferous vegetables as a model system. Intriguingly, our data suggested that the controversy was due to the dosage effect. The photocatalytic activity of TiO2 NPs positively affected seed germination and growth through gibberellins in a plant-tolerable range (0.1 and 0.2 mg/cm2), whereas overdosing (1 mg/cm2) induced tissue damage. Given that plants are the foundations of the ecosystem; these findings are useful for agricultural application, sustainable development and maintenance of healthy environments.
Assuntos
Nanopartículas Metálicas , Nanopartículas , Plântula , Germinação , Verduras , Ecossistema , Sementes , Titânio/toxicidade , Nanopartículas/toxicidade , Corante Amaranto , Nanopartículas Metálicas/toxicidadeRESUMO
Abnormal immune responses and cytokine storm are involved in the development of severe dengue, a life-threatening disease with high mortality. Dengue virus-induced neutrophil NETosis response is associated with cytokine storm; while the role of viral factors on the elicitation of excessive inflammation mains unclear. Here we found that treatments of dengue virus envelope protein domain III (EIII), cellular binding moiety of virion, is sufficient to induce neutrophil NETosis processes in vitro and in vivo. Challenges of EIII in inflammasome Nlrp3-/- and Casp1-/- mutant mice resulted in less inflammation and NETosis responses, as compared to the wild type controls. Blockages of EIII-neutrophil interaction using cell-binding competitive inhibitor or selective Nlrp3 inflammasome inhibitors OLT1177 and Z-WHED-FMK can suppress EIII-induced NETosis response. These results collectively suggest that Nlrp3 inflammsome is a molecular target for treating dengue-elicited inflammatory pathogenesis.
Assuntos
Armadilhas Extracelulares/imunologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Domínios e Motivos de Interação entre Proteínas/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Linhagem Celular , Dengue/imunologia , Dengue/metabolismo , Dengue/virologia , Vírus da Dengue/imunologia , Imunofenotipagem , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Proteínas Recombinantes , Proteínas do Envelope Viral/químicaRESUMO
Psychological stress increases the risk of gastrointestinal (GI) tract diseases, which involve bidirectional communication of the GI and nerves systems. Acute stress leads to GI ulcers; however, the mechanism of the native cellular protection pathway, which safeguards tissue integrality and maintains GI homeostasis, remains to be investigated. In a mouse model of this study, restraint stress induced GI leakage, abnormal tight junction protein expression, and cell death of gut epithelial cells. The expression of activating transcription factor 3 (ATF3), a stress-responsive transcription factor, is upregulated in the GI tissues of stressed animals. ATF3-deficient mice displayed an exacerbated phenotype of GI injuries. These results suggested that, in response to stress, ATF3 is part of the native cellular protective pathway in the GI system, which could be a molecular target for managing psychological stress-induced GI tract diseases.
Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Gastroenteropatias/etiologia , Restrição Física , Estresse Psicológico/complicações , Fator 3 Ativador da Transcrição/deficiência , Animais , Caspase 3/metabolismo , Duodeno/efeitos dos fármacos , Duodeno/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Gastroenteropatias/sangue , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores da Bomba de Prótons/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Psicológico/sangue , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismoRESUMO
The large amounts of engineered titanium dioxide nanoparticles (TiO2NPs) that have been manufactured have inevitably been released into the ecosystem. Reports have suggested that TiO2 is a relatively inert material that has low toxicity to animals. However, as various types of NPs increasingly accumulate in the ocean, their effects on aquatic life-forms remain unclear. In this study, a zebrafish model was used to investigate TiO2NP-induced injury and mortality. We found that the treatment dosages of TiO2NP are positively associated with increased motility of zebrafish and the bacterial counts in the water. Notably, gill but not dorsal fin and caudal fin of the zebrafish displayed considerably increased bacterial load. Metagenomic analysis further revealed that gut microflora, such as phyla Proteobacteria, Bacteroidetes, and Actinobacteria, involving more than 95% of total bacteria counts in the NP-injured zebrafish gill samples. These results collectively suggest that opportunistic bacterial infections are associated with TiO2NP-induced mortality in zebrafish. Infections secondary to TiO2NP-induced injury could be a neglected factor determining the detrimental effects of TiO2NPs on wild fish.
Assuntos
Brânquias/microbiologia , Nanopartículas , Titânio/química , Titânio/toxicidade , Peixe-Zebra/microbiologia , AnimaisRESUMO
In this paper, a new type of hybrid solar cell based on a heterojunction between poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and vertically aligned n-type GaAs nanowire (NW) arrays is investigated. The GaAs NW arrays are fabricated by directly performing the nano-etching of GaAs wafer with spun-on SiO(2) nanospheres as the etch mask through inductively coupled plasma reactive ion etching. The PEDOT:PSS adheres to the surface of the GaAs NW arrays to form a p-n junction. The morphology of GaAs NW arrays strongly influences the characteristics of the GaAs NW/PEDOT:PSS hybrid solar cells. The suppression of reflectance and the interpenetrating heterojunction interface of GaAs NW arrays offers great improvements in efficiency relative to a conventional planar cell. Compared to the planar GaAs/PEDOT:PSS cells, the power conversion efficiency under AM 1.5 global one sun illumination is improved from 0.29% to 5.8%.
RESUMO
Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet-visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films.