Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Cell Biol ; 223(6)2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38578646

RESUMO

Phosphoinositides are a small family of phospholipids that act as signaling hubs and key regulators of cellular function. Detecting their subcellular distribution is crucial to gain insights into membrane organization and is commonly done by the overexpression of biosensors. However, this leads to cellular perturbations and is challenging in systems that cannot be transfected. Here, we present a toolkit for the reliable, fast, multiplex, and super-resolution detection of phosphoinositides in fixed cells and tissue, based on recombinant biosensors with self-labeling SNAP tags. These are highly specific and reliably visualize the subcellular distributions of phosphoinositides across scales, from 2D or 3D cell culture to Drosophila tissue. Further, these probes enable super-resolution approaches, and using STED microscopy, we reveal the nanoscale organization of PI(3)P on endosomes and PI(4)P on the Golgi. Finally, multiplex staining reveals an unexpected presence of PI(3,5)P2-positive membranes in swollen lysosomes following PIKfyve inhibition. This approach enables the versatile, high-resolution visualization of multiple phosphoinositide species in an unprecedented manner.


Assuntos
Técnicas Biossensoriais , Fosfatidilinositóis , Endossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Técnicas Biossensoriais/métodos
2.
Mol Biol Cell ; 34(6): ar55, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36735484

RESUMO

In epithelial cells, planar polarization of subapical microtubule networks is thought to be important for both breaking cellular symmetry and maintaining the resulting cellular polarity. Studies in the Drosophila pupal wing and other tissues have suggested two alternative mechanisms for specifying network polarity. On one hand, mechanical strain and/or cell shape have been implicated as key determinants; on the other hand, the Fat-Dachsous planar polarity pathway has been suggested to be the primary polarizing cue. Using quantitative image analysis in the pupal wing, we reassess these models. We found that cell shape was a strong predictor of microtubule organization in the developing wing epithelium. Conversely, Fat-Dachsous polarity cues do not play any direct role in the organization of the subapical microtubule network, despite being able to weakly recruit the microtubule minus-end capping protein Patronin to cell boundaries. We conclude that any effect of Fat-Dachsous on microtubule polarity is likely to be indirect, via their known ability to regulate cell shape.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Forma Celular , Caderinas/metabolismo , Microtúbulos/metabolismo , Polaridade Celular , Asas de Animais , Pupa/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA