Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
J Virol ; 96(12): e0031722, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35604142

RESUMO

The RIG-I-like receptor signaling pathway is crucial for producing type I interferon (IFN-I) against RNA viruses. The present study observed that viral infection increased annexin-A1 (ANXA1) expression, and ANXA1 then promoted RNA virus-induced IFN-I production. Compared to ANXA1 wild-type cells, ANXA1-/- knockout cells showed IFN-ß production decreasing after viral stimulation. RNA virus stimulation induced ANXA1 to regulate IFN-ß production through the TBK1-IRF3 axis but not through the NF-κB axis. ANXA1 also interacted with JAK1 and STAT1 to increase signal transduction induced by IFN-ß or IFN-γ. We assessed the effect of ANXA1 on the replication of foot-and-mouth disease virus (FMDV) and found that ANXA1 inhibits FMDV replication dependent on IFN-I production. FMDV 3A plays critical roles in viral replication and host range. The results showed that FMDV 3A interacts with ANXA1 to inhibit its ability to promote IFN-ß production. We also demonstrated that FMDV 3A inhibits the formation of ANXA1-TBK1 complex. These results indicate that ANXA1 positively regulates RNA virus-stimulated IFN-ß production and FMDV 3A antagonizes ANXA1-promoted IFN-ß production to modulate viral replication. IMPORTANCE FMDV is a pathogen that causes one of the world's most destructive and highly contagious animal diseases. The FMDV 3A protein plays a critical role in viral replication and host range. Although 3A is one of the viral proteins that influences FMDV virulence, its underlying mechanisms remain unclear. ANXA1 is involved in immune activation against pathogens. The present study demonstrated that FMDV increases ANXA1 expression, while ANXA1 inhibits FMDV replication. The results also showed that ANXA1 promotes RNA virus-induced IFN-I production through the IRF3 axis at VISA and TBK1 levels. ANXA1 was also found to interact with JAK1 and STAT1 to strengthen signal transduction induced by IFN-ß and IFN-γ. 3A interacted with ANXA1 to inhibit ANXA1-TBK1 complex formation, thereby antagonizing the inhibitory effect of ANXA1 on FMDV replication. This study helps to elucidate the mechanism underlying the effect of the 3A protein on FMDV replication.


Assuntos
Anexina A1 , Vírus da Febre Aftosa , Replicação Viral , Animais , Anexina A1/metabolismo , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Vírus da Febre Aftosa/fisiologia , Interações Hospedeiro-Patógeno , Fator Regulador 3 de Interferon , Interferon beta/metabolismo , Interferon gama , Janus Quinase 1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição STAT1/metabolismo
2.
Am J Physiol Regul Integr Comp Physiol ; 318(2): R351-R359, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31746626

RESUMO

Maternal high-fat diet (HFD) is associated with metabolic syndrome and cardiovascular diseases in adult offspring. Our previous study demonstrated that maternal HFD enhances pressor responses to ANG II or a proinflammatory cytokine (PIC), which is associated with increased expression of brain renin-angiotensin system (RAS) components and PICs in adult offspring. The present study further investigated whether inhibition of angiotensin-converting enzyme (ACE) or tumor necrosis factor-α (TNF-α) blocks sensitization of ANG II hypertension in offspring of HFD dams. All offspring were bred from dams with normal fat diet (NFD) or HFD starting two weeks before mating and maintained until weaning of the offspring. Then the weaned offspring were treated with an ACE inhibitor (captopril) or a TNF-α inhibitor (pentoxifylline) in the drinking water through the end of testing with a slow-pressor dose of ANG II. RT-PCR analyses of the lamina terminalis and paraventricular nucleus revealed upregulation of mRNA expression of several RAS components and PICs in male offspring of HFD dams when compared with age-matched offspring of NFD dams. The enhanced gene expression was attenuated by blockade of either RAS or PICs. Likewise, ANG II administration produced an augmented pressor response in offspring of HFD dams. This was abolished by either ACE or TNF-α inhibitor. Taken together, this study provides mechanistic evidence and a therapeutic strategy that systemic inhibition of the RAS and PICs can block maternal HFD-induced sensitization of ANG II hypertension, which is associated with attenuation of brain RAS and PIC expression in offspring.


Assuntos
Angiotensina II , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Captopril/farmacologia , Dieta Hiperlipídica , Hipertensão/prevenção & controle , Pentoxifilina/farmacologia , Efeitos Tardios da Exposição Pré-Natal , Inibidores do Fator de Necrose Tumoral/farmacologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Feminino , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Ratos Sprague-Dawley , Sistema Renina-Angiotensina/efeitos dos fármacos
3.
Am J Physiol Heart Circ Physiol ; 314(5): H1061-H1069, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29373045

RESUMO

Accumulating evidence indicates that maternal high-fat diet (HFD) is associated with metabolic syndrome and cardiovascular disease in adult offspring. The present study tested the hypothesis that maternal HFD modulates the brain renin-angiotensin system (RAS), oxidative stress, and proinflammatory cytokines that alter angiotensin II (ANG II) and TNF-α actions and sensitize the ANG II-elicited hypertensive response in adult offspring. All offspring were cross fostered by dams on the same or opposite diet to yield the following four groups: offspring from normal-fat control diet-fed dams suckled by control diet-fed dams (OCC group) or by HFD-fed dams (OCH group) and offspring from HFD-fed dams fed a HFD suckled by control diet-fed dams (OHC group) or by HFD-fed dams (OHH group). RT-PCR analyses of the lamina terminalis and paraventricular nucleus indicated upregulation of mRNA expression of several RAS components, NADPH oxidase, and proinflammatory cytokines in 10-wk-old male offspring of dams fed a HFD during either pregnancy, lactation, or both (OHC, OCH, and OHH groups). These offspring also showed decreased cardiac baroreflex sensitivity and increased pressor responses to intracerebroventricular microinjection of either ANG II or TNF-α. Furthermore, chronic systemic infusion of ANG II resulted in enhanced upregulation of mRNA expression of RAS components, NADPH oxidase, and proinflammatory cytokines in the lamina terminalis and paraventricular nucleus and an augmented hypertensive response in the OHC, OCH, and OHH groups compared with the OCC group. The results suggest that maternal HFD blunts cardiac baroreflex function and enhances pressor responses to ANG II or proinflammatory cytokines through upregulation of the brain RAS, oxidative stress, and inflammation. NEW & NOTEWORTHY The results of our study indicate that a maternal high-fat diet during either pregnancy or lactation is sufficient for perinatal programming of sensitization for hypertension, which is associated with hyperreactivity of central cardiovascular nuclei that, in all likelihood, involves elevated expression of the renin-angiotensin system, NADPH oxidase, and proinflammatory cytokines. The present study demonstrates, for the first time, the central mechanism underlying maternal high-fat diet sensitization of the hypertensive response in adult offspring.


Assuntos
Angiotensina II , Fenômenos Fisiológicos da Nutrição Animal , Barorreflexo , Pressão Sanguínea , Encéfalo/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Coração/inervação , Hipertensão/fisiopatologia , Fenômenos Fisiológicos da Nutrição Materna , Efeitos Tardios da Exposição Pré-Natal , Animais , Encéfalo/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Estado Nutricional , Estresse Oxidativo , Gravidez , Ratos Sprague-Dawley , Sistema Renina-Angiotensina , Vasoconstrição
4.
Bioprocess Biosyst Eng ; 41(1): 87-96, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29026998

RESUMO

Acetolactate synthase catalyzes two molecules of pyruvates to form α-acetolactate, which is further converted to acetoin and 2,3-butanediol. In this study, by heterologous expression in Escherichia coli, the enzymatic properties of acetolactate synthase (AlsS) from Bacillus licheniformis WX-02 were characterized. Its K m and k cat for pyruvate were 3.96 mM and 514/s, respectively. It has the optimal activity at pH 6.5, 37 °C and was feedback inhibited by L-valine, L-leucine and L-isoleucine. Furthermore, the alsS-deficient strain could not produce acetoin, 2,3-butanediol, and L-valine, while the complementary strain was able to restore these capacities. The alsS overexpressing strain produced higher amounts of acetoin/2,3-butanediol (57.06 g/L) and L-valine (2.68 mM), which were 10.90 and 92.80% higher than those of the control strain, respectively. This is the first report regarding the in-depth understanding of AlsS enzymatic properties and its functions in B. licheniformis, and overexpression of AlsS can effectively improve acetoin/2,3-butanediol and L-valine production in B. licheniformis. We envision that this AlsS can also be applied in the improvement of acetoin/2,3-butanediol and L-valine production in other microbes.


Assuntos
Acetoína/metabolismo , Acetolactato Sintase , Bacillus licheniformis/genética , Proteínas de Bactérias , Butileno Glicóis/metabolismo , Escherichia coli , Valina/metabolismo , Acetolactato Sintase/biossíntese , Acetolactato Sintase/genética , Bacillus licheniformis/enzimologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
5.
Biotechnol Lett ; 37(6): 1243-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25700818

RESUMO

OBJECTIVES: Bacillus licheniformis WX-02 is used for the production of many valuable chemicals. Here, we have sought to improve L-valine production by blocking the metabolic pathways related to branched-chain amino acids. RESULTS: The synthesis genes of L-leucine (leuA) and L-isoleucine (ilvA) were deleted to obtain mutant strains. L-Valine yields of WX-02ΔleuA and WX-02ΔilvA reached 33.2 and 21.1 mmol/l, respectively, which are 22 and 14 times higher than the wild-type WX-02 (1.53 mmol/l). After further deletion of L-lactate dehydrogenase gene (ldh) from WX-02ΔleuA, the productivity reached 0.47 mmol/l h, an increase of 19 %. CONCLUSION: We provide a possibility to over-produce L-valine using genetically-modified B. licheniformis using remodeling of the biosynthetic pathway to L-valine.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Bacillus/genética , Bacillus/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Valina/biossíntese , Deleção de Genes
6.
Sci Total Environ ; 846: 157394, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35850333

RESUMO

Bacillus altitudinis HM-12, isolated from ferromanganese ore tailings, can resist up to 1200 mM Mn(II) when exposed to concentrations from 50 mM to 1400 mM. HM-12 exhibited high Mn(II) removal efficiency (90.6 %). We report the transcriptional profile of HM-12 using RNA-Seq and found 423 upregulated and 536 downregulated differentially expressed genes (DEGs) compared to the control. Gene Ontology analysis showed that DEGs were mainly linked with transporter activity, binding, catalytic activity in molecular function, cellular anatomical entity in cellular component, cellular process, and metabolic process. Kyoto Encyclopedia of Genes and Genomes analysis showed that DEGs were mostly mapped to membrane transport, signal transduction, carbohydrate and amino acid metabolism, energy metabolism, and cellular community pathways. Transport analysis showed that two manganese importer systems, mntH and mntABC, were significantly downregulated. The manganese efflux genes (mneS, yceF and ykoY) exhibited significant upregulation. Manganese homeostasis seems to be subtly regulated by manganese uptake and efflux genes. Moreover, it was found that copA as a Mn(II) oxidase gene and a copper chaperone gene copZ were considerably upregulated by signal transduction analysis. csoR encoding a transcriptional repressor which can regulate the copZA operon was upregulated. The strong Mn(II) oxidizing activity of HM-12 was also confirmed by physicochemical characterization. In metabolism and environmental information processing, yjqC encoding manganese catalase was significantly upregulated, while katE and katX encoding heme catalases were significantly downregulated. The antioxidant gene pcaC was significantly upregulated, but ykuU encoding alkyl hydroperoxide reductase, yojM encoding superoxide dismutase, and perR encoding redox-sensing transcriptional repressor were downregulated. These results highlight the oxidative activity of HM-12 by regulating the transcription of oxidase, catalase, peroxidase, and superoxide dismutase to sense the cellular redox status and prevent Mn(II) intoxication. This study provides relevant information on the biological tolerance and oxidation mechanisms in response to Mn(II) stress.


Assuntos
Regulação Bacteriana da Expressão Gênica , Manganês , Bacillus , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Manganês/metabolismo , Manganês/toxicidade , Superóxido Dismutase/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
7.
Sci Total Environ ; 752: 141827, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32889271

RESUMO

Northwest China is abundant in iron ore reserves and has become one of the important iron ore mining bases in China. However, the contamination and microbial community structure of iron tailing ponds in Northwest China have not been extensively investigated. In the present study, we characterized the main physicochemical properties, the multiple heavy metal contamination, and the bacterial community structure of the soils surrounding an iron tailing pond in Linze County, Zhangye city, Gansu Province. The tailing-associated soils were barren, exhibiting alkaline pH and low organic matter (OM), total nitrogen (TN) and total potassium (TK) compared with the control areas. There was considerable multiple heavy metal pollution in the iron tailing pond, mainly including lead (Pb), manganese (Mn), arsenic (As), cadmium (Cd), zinc (Zn), iron (Fe) and copper (Cu). Among the 303 identified core operational taxonomic units (OTUs), Actinobacteria, Proteobacteria and Deinococcus-Thermus were predominant at the phylum level, and Blastococcus, Arthrobacter, Marmoricola, Kocuria, Truepera, and Sphingomonadaceae were prevalent at a finer taxonomic level. The bacterial richness and diversity of the tailing samples were significantly lower than those of the reference samples. RDA, VPA and Spearman correlation analyses showed that the soil pH, CEC, OM, TP, TK, Cd, Pb, Ni, Zn, As and Mn had significant effects on the bacterial community composition and distribution. This work profiles the basic features of the soil physicochemical properties, the multiple heavy metal contamination and the bacterial community structure in an iron tailing pond in Northwest China, thereby providing a foundation for the future ecological remediation of the iron tailing environment in the area.


Assuntos
Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental , Ferro , Metais Pesados/análise , Solo , Poluentes do Solo/análise
8.
Oxid Med Cell Longev ; 2016: 3562634, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27746855

RESUMO

Heart failure (HF) is characterized by cardiac dysfunction along with autonomic unbalance that is associated with increased renin-angiotensin system (RAS) activity and elevated levels of proinflammatory cytokines (PICs). Renal denervation (RD) has been shown to improve cardiac function in HF, but the protective mechanisms remain unclear. The present study tested the hypothesis that RD ameliorates isoproterenol- (ISO-) induced HF through regulation of brain RAS and PICs. Chronic ISO infusion resulted in remarked decrease in blood pressure (BP) and increase in heart rate and cardiac dysfunction, which was accompanied by increased BP variability and decreased baroreflex sensitivity and HR variability. Most of these adverse effects of ISO on cardiac and autonomic function were reversed by RD. Furthermore, ISO upregulated mRNA and protein expressions of several components of the RAS and PICs in the lamina terminalis and hypothalamic paraventricular nucleus, two forebrain nuclei involved in cardiovascular regulations. RD significantly inhibited the upregulation of these genes. Either intracerebroventricular AT1-R antagonist, irbesartan, or TNF-α inhibitor, etanercept, mimicked the beneficial actions of RD in the ISO-induced HF. The results suggest that the RD restores autonomic balance and ameliorates ISO-induced HF and that the downregulated RAS and PICs in the brain contribute to these beneficial effects of RD.


Assuntos
Encéfalo/patologia , Insuficiência Cardíaca/induzido quimicamente , Inflamação/metabolismo , Isoproterenol/efeitos adversos , Rim/patologia , Animais , Denervação , Regulação para Baixo , Rim/metabolismo , Masculino , Ratos , Ratos Wistar , Sistema Renina-Angiotensina/efeitos dos fármacos
9.
Appl Biochem Biotechnol ; 119(2): 121-32, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15531783

RESUMO

Glucoamylase was immobilized onto novel porous polymer supports. The properties of immobilized glucoamylase and the relationship between the activity of immobilized enzyme and the properties of porous polymer supports were investigated. Compared with the native enzyme, the temperature profile of immobilized glucoamylase was widened, and the optimum pH was also changed. The optimum substrate concentration of immobilized glucoamylase was higher than that of native enzyme. After storage for 23 d, the immobilized glucoamylase still maintained about 84% of its initial activity, whereas the native enzyme only maintained about 58% of the initial activity. Moreover, after using repeatedly seven times, the immobilized enzyme maintained about 85% of its initial activity. Furthermore, the properties of porous polymer supports had an effect on the activity of the immobilized glucoamylase.


Assuntos
Reatores Biológicos , Dioxóis/química , Glucana 1,4-alfa-Glucosidase/química , Membranas Artificiais , Metacrilatos/química , Amido/química , Materiais Biocompatíveis/química , Ativação Enzimática , Estabilidade Enzimática , Enzimas Imobilizadas/química , Concentração de Íons de Hidrogênio , Teste de Materiais , Polímeros/química , Porosidade , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA