Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Am J Pathol ; 185(4): 1012-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25660180

RESUMO

Although keratosis pilaris (KP) is common, its etiopathogenesis remains unknown. KP is associated clinically with ichthyosis vulgaris and atopic dermatitis and molecular genetically with filaggrin-null mutations. In 20 KP patients and 20 matched controls, we assessed the filaggrin and claudin 1 genotypes, the phenotypes by dermatoscopy, and the morphology by light and transmission electron microscopy. Thirty-five percent of KP patients displayed filaggrin mutations, demonstrating that filaggrin mutations only partially account for the KP phenotype. Major histologic and dermatoscopic findings of KP were hyperkeratosis, hypergranulosis, mild T helper cell type 1-dominant lymphocytic inflammation, plugging of follicular orifices, striking absence of sebaceous glands, and hair shaft abnormalities in KP lesions but not in unaffected skin sites. Changes in barrier function and abnormal paracellular permeability were found in both interfollicular and follicular stratum corneum of lesional KP, which correlated ultrastructurally with impaired extracellular lamellar bilayer maturation and organization. All these features were independent of filaggrin genotype. Moreover, ultrastructure of corneodesmosomes and tight junctions appeared normal, immunohistochemistry for claudin 1 showed no reduction in protein amounts, and molecular analysis of claudin 1 was unremarkable. Our findings suggest that absence of sebaceous glands is an early step in KP pathogenesis, resulting in downstream hair shaft and epithelial barrier abnormalities.


Assuntos
Anormalidades Múltiplas/patologia , Doença de Darier/patologia , Epiderme/anormalidades , Sobrancelhas/anormalidades , Cabelo/anormalidades , Proteínas de Filamentos Intermediários/deficiência , Glândulas Sebáceas/anormalidades , Anormalidades Múltiplas/genética , Adulto , Idoso , Claudina-1/metabolismo , Doença de Darier/genética , Dermoscopia , Desmossomos/metabolismo , Epiderme/ultraestrutura , Sobrancelhas/patologia , Feminino , Proteínas Filagrinas , Genótipo , Cabelo/ultraestrutura , Humanos , Proteínas de Filamentos Intermediários/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Permeabilidade , Fenótipo , Glândulas Sebáceas/patologia , Glândulas Sebáceas/ultraestrutura , Adulto Jovem
2.
Exp Dermatol ; 24(5): 370-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25739654

RESUMO

Detrimental consequences of ultraviolet radiation (UVR) in skin include photoageing, immunosuppression and photocarcinogenesis, processes also significantly regulated by local glucocorticoid (GC) availability. In man, the enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) generates the active GC cortisol from cortisone (or corticosterone from 11-dehydrocorticosterone in rodents). 11ß-HSD1 oxo-reductase activity requires the cofactor NADPH, generated by hexose-6-phosphate dehydrogenase. We previously demonstrated increased 11ß-HSD1 levels in skin obtained from photoexposed versus photoprotected anatomical regions. However, the direct effect of UVR on 11ß-HSD1 expression remains to be elucidated. To investigate the cutaneous regulation of 11ß-HSD1 following UVR in vivo, the dorsal skin of female SKH1 mice was irradiated with 50, 100, 200 and 400 mJ/cm(2) UVB. Measurement of transepidermal water loss, 11ß-HSD1 activity, mRNA/protein expression and histological studies was taken at 1, 3 and 7 days postexposure. 11ß-HSD1 and hexose-6-phosphate dehydrogenase mRNA expression peaked 1 day postexposure to 400 mJ/cm(2) UVB before subsequently declining (days 3 and 7). Corresponding increases in 11ß-HSD1 protein and enzyme activity were observed 3 days postexposure coinciding with reduced GC receptor mRNA expression. Immunofluorescence studies revealed 11ß-HSD1 localization to hyperproliferative epidermal keratinocytes in UVB-exposed skin. 11ß-HSD1 expression and activity were also induced by 200 and 100 (but not 50) mJ/cm(2) UVB and correlated with increased transepidermal water loss (indicative of barrier disruption). UVB-induced 11ß-HSD1 activation represents a novel mechanism that may contribute to the regulation of cutaneous responses to UVR exposure.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/biossíntese , Epiderme/enzimologia , Epiderme/efeitos da radiação , Raios Ultravioleta/efeitos adversos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Animais , Água Corporal/metabolismo , Água Corporal/efeitos da radiação , Proliferação de Células/efeitos da radiação , Relação Dose-Resposta à Radiação , Indução Enzimática/efeitos da radiação , Epiderme/patologia , Feminino , Glucocorticoides/metabolismo , Humanos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
3.
Exp Dermatol ; 23(9): 645-51, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24980072

RESUMO

Systemic and topical glucocorticoids (GC) can cause significant adverse effects not only on the dermis, but also on epidermal structure and function. In epidermis, a striking GC-induced alteration in permeability barrier function occurs that can be attributed to an inhibition of epidermal mitogenesis, differentiation and lipid production. As prior studies in normal hairless mice demonstrated that topical applications of a flavonoid ingredient found in citrus, hesperidin, improve epidermal barrier function by stimulating epidermal proliferation and differentiation, we assessed here whether its topical applications could prevent GC-induced changes in epidermal function in murine skin and the basis for such effects. When hairless mice were co-treated topically with GC and 2% hesperidin twice-daily for 9 days, hesperidin co-applications prevented the expected GC-induced impairments of epidermal permeability barrier homoeostasis and stratum corneum (SC) acidification. These preventive effects could be attributed to a significant increase in filaggrin expression, enhanced epidermal ß-glucocerebrosidase activity and accelerated lamellar bilayer maturation, the last two likely attributable to a hesperidin-induced reduction in stratum corneum pH. Furthermore, co-applications of hesperidin with GC largely prevented the expected GC-induced inhibition of epidermal proliferation. Finally, topical hesperidin increased epidermal glutathione reductase mRNA expression, which could counteract multiple functional negative effects of GC on epidermis. Together, these results show that topical hesperidin prevents GC-induced epidermal side effects by divergent mechanisms.


Assuntos
Clobetasol/efeitos adversos , Clobetasol/antagonistas & inibidores , Epiderme/efeitos dos fármacos , Glucocorticoides/efeitos adversos , Glucocorticoides/antagonistas & inibidores , Hesperidina/administração & dosagem , Administração Tópica , Animais , Proliferação de Células/efeitos dos fármacos , Clobetasol/administração & dosagem , Epiderme/patologia , Epiderme/fisiopatologia , Feminino , Proteínas Filagrinas , Glucocorticoides/administração & dosagem , Glutationa Redutase/genética , Proteínas de Filamentos Intermediários/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Pelados , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/efeitos dos fármacos
4.
Exp Dermatol ; 22(3): 210-5, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23489424

RESUMO

The beneficial effects of certain herbal medicines on cutaneous function have been appreciated for centuries. Among these agents, chrysanthemum extract, apigenin, has been used for skin care, particularly in China, for millennia. However, the underlying mechanisms by which apigenin benefits the skin are not known. In this study, we first determined whether topical apigenin positively influences permeability barrier homoeostasis, and then the basis thereof. Hairless mice were treated topically with either 0.1% apigenin or vehicle alone twice daily for 9 days. At the end of the treatments, permeability barrier function was assessed with either an electrolytic water analyzer or a Tewameter. Our results show that topical apigenin significantly enhanced permeability barrier homoeostasis after tape stripping, although basal permeability barrier function remained unchanged. Improved barrier function correlated with enhanced filaggrin expression and lamellar body production, which was paralleled by elevated mRNA levels for the epidermal ABCA12. The mRNA levels for key lipid synthetic enzymes also were upregulated by apigenin. Finally, both cathelicidin-related peptide and mouse beta-defensin 3 immunostaining were increased by apigenin. We conclude that topical apigenin improves epidermal permeability barrier function by stimulating epidermal differentiation, lipid synthesis and secretion, as well as cutaneous antimicrobial peptide production. Apigenin could be useful for the prevention and treatment of skin disorders characterized by permeability barrier dysfunction, associated with reduced filaggrin levels and impaired antimicrobial defenses, such as atopic dermatitis.


Assuntos
Apigenina/administração & dosagem , Apigenina/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Epiderme/fisiologia , Homeostase/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Administração Tópica , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Permeabilidade da Membrana Celular/fisiologia , Células Cultivadas , Chrysanthemum , Relação Dose-Resposta a Droga , Células Epidérmicas , Epiderme/efeitos dos fármacos , Feminino , Proteínas Filagrinas , Homeostase/fisiologia , Proteínas de Filamentos Intermediários/metabolismo , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos , Camundongos Pelados , Modelos Animais , Pele/citologia , Pele/efeitos dos fármacos , Pele/metabolismo , beta-Defensinas/metabolismo , Catelicidinas
5.
Exp Dermatol ; 21(5): 337-40, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22509829

RESUMO

Orange peel extract appears to exhibit beneficial effects on skin whitening, inflammation, UVB protection, as well as keratinocyte proliferation. In the present study, we determine whether topical hesperidin influences epidermal permeability barrier function and its underlying mechanisms. Hairless mice were treated topically with 2% hesperidin or 70% ethanol alone twice daily for 6 days. At the end of treatment, basal transepidermal water loss (TEWL) was measured 2 and 4 h post barrier disruption. Epidermal proliferation and differentiation were evaluated by immunohistochemical staining and Western blot analysis. Additionally, lamellar body density and secretion were assessed by electron microscopy. Although there were no significant differences in basal barrier function, in comparison with control animals, topical hesperidin significantly accelerated barrier recovery at both 2 and 4 h after acute barrier abrogation. Enhanced barrier function in hesperidin-treated skin correlated with stimulation of both epidermal proliferation and differentiation, as well as enhanced lamellar body secretion. These results indicate that topical hesperidin enhances epidermal permeability barrier homeostasis at least in part due to stimulation of epidermal proliferation, differentiation, as well as lamellar body secretion.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Epidérmicas , Hesperidina/administração & dosagem , Hesperidina/farmacologia , Administração Tópica , Animais , Biópsia , Diferenciação Celular/fisiologia , Permeabilidade da Membrana Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Epiderme/fisiologia , Epiderme/ultraestrutura , Feminino , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Camundongos , Camundongos Pelados , Modelos Animais
6.
Artigo em Inglês | MEDLINE | ID: mdl-23304222

RESUMO

Herbal medicines have been used in preventing and treating skin disorders for centuries. It has been demonstrated that systemic administration of chrysanthemum extract exhibits anti-inflammatory properties. However, whether topical applications of apigenin, a constituent of chrysanthemum extract, influence cutaneous inflammation is still unclear. In the present study, we first tested whether topical applications of apigenin alleviate cutaneous inflammation in murine models of acute dermatitis. The murine models of acute allergic contact dermatitis and acute irritant contact dermatitis were established by topical application of oxazolone and phorbol 12-myristate 13-acetate (TPA), respectively. Inflammation was assessed in both dermatitis models by measuring ear thickness. Additionally, the effect of apigenin on stratum corneum function in a murine subacute allergic contact dermatitis model was assessed with an MPA5 physiology monitor. Our results demonstrate that topical applications of apigenin exhibit therapeutic effects in both acute irritant contact dermatitis and allergic contact dermatitis models. Moreover, in comparison with the vehicle treatment, topical apigenin treatment significantly reduced transepidermal water loss, lowered skin surface pH, and increased stratum corneum hydration in a subacute murine allergic contact dermatitis model. Together, these results suggest that topical application of apigenin could provide an alternative regimen for the treatment of dermatitis.

7.
Exp Dermatol ; 20(3): 285-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21323748

RESUMO

Chinese herbal medicine (CHM) has been shown to have beneficial effects for both skin disorders with barrier abnormality and as skin care ingredients. Yet, how CHM exerts their benefits is unclear. As most, if not all, inflammatory dermatoses are accompanied by abnormal permeability barrier function, we assessed the effects of topical CHM extracts on epidermal permeability barrier function and their potential mechanisms. Topical CHM accelerated barrier recovery following acute barrier disruption. Epidermal lipid content and mRNA expression of fatty acid and ceramide synthetic enzymes increased following topical CHM treatment in addition to mRNA levels for the epidermal glucosylceramide transport protein, ATP-binding cassette A12. Likewise, CHM extract increased mRNA expression of antimicrobial peptides both in vivo and in vitro. These results demonstrate that the topical CHM extract enhances epidermal permeability barrier function, suggesting that topical CHM could provide an alternative regimen for the prevention/treatment of inflammatory dermatoses accompanied by barrier abnormalities.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Epiderme/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Pele/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/genética , Amidoidrolases/genética , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Medicamentos de Ervas Chinesas/isolamento & purificação , Células Epidérmicas , Epiderme/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Pelados , Vesículas Secretórias/metabolismo , Serina C-Palmitoiltransferase/genética , Pele/citologia , Pele/metabolismo , Regulação para Cima/genética , beta-Defensinas/genética , beta-Defensinas/metabolismo , Catelicidinas
8.
Eur J Dermatol ; 21 Suppl 2: 48-51, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21628130

RESUMO

Psychological stress (PS) exerts well-known negative consequences for permeability barrier function in humans and mice, and deterioration of barrier function appears to be attributable largely to excess production of endogenous glucocorticoids (GC). More recently, PS has been shown to compromise antimicrobial defense, also by GC-dependent mechanisms. We assessed here changes in a third antimicrobial peptide (AMP); i.e., the neuropeptide, catestatin (Cst), which also is expressed in the outer epidermis, and previously shown to be regulated by changes in permeability barrier status. In these studies, PS again provoked a decline in both mouse cathelicidin (CAMP) and mouse ß-defensin 3 (mBD3) expression, in a GC-dependent fashion. In contrast, Cst immunostaining instead increased after short-term PS, but then began to decline with more sustained PS. In cultured keratinocytes, we showed further that GC downregulate Cst expression, but ß-adrenergic blockade increased immunostaining for Cst in the face of long-term PS. Furthermore, ß-adrenergic blockade also upregulated CAMP and mBD3 expression. Together, these results suggest that both endogenous GC and ß-adrenergic signaling regulate AMP expression.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Cromogranina A/metabolismo , Fragmentos de Peptídeos/metabolismo , Estresse Psicológico/fisiopatologia , Animais , Feminino , Queratinócitos/metabolismo , Camundongos , Dermatopatias Infecciosas/metabolismo , Estresse Psicológico/metabolismo , beta-Defensinas/metabolismo
9.
J Clin Invest ; 117(11): 3339-49, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17975669

RESUMO

The skin is the first line of defense against microbial infection, and psychological stress (PS) has been shown to have adverse effects on cutaneous barrier function. Here we show that PS increased the severity of group A Streptococcus pyogenes (GAS) cutaneous skin infection in mice; this was accompanied by increased production of endogenous glucocorticoids (GCs), which inhibited epidermal lipid synthesis and decreased lamellar body (LB) secretion. LBs encapsulate antimicrobial peptides (AMPs), and PS or systemic or topical GC administration downregulated epidermal expression of murine AMPs cathelin-related AMP and beta-defensin 3. Pharmacological blockade of the stress hormone corticotrophin-releasing factor or of peripheral GC action, as well as topical administration of physiologic lipids, normalized epidermal AMP levels and delivery to LBs and decreased the severity of GAS infection during PS. Our results show that PS decreases the levels of 2 key AMPs in the epidermis and their delivery into LBs and that this is attributable to increased endogenous GC production. These data suggest that GC blockade and/or topical lipid administration could normalize cutaneous antimicrobial defense during PS or GC increase. We believe this to be the first mechanistic link between PS and increased susceptibility to infection by microbial pathogens.


Assuntos
Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Epiderme/metabolismo , Dermatopatias Infecciosas/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes , Estresse Psicológico , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Clobetasol/administração & dosagem , Clobetasol/metabolismo , Suscetibilidade a Doenças , Regulação para Baixo , Epiderme/química , Epiderme/microbiologia , Feminino , Glucocorticoides/administração & dosagem , Glucocorticoides/metabolismo , Humanos , Metabolismo dos Lipídeos , Camundongos , Camundongos Nus , Dermatopatias Infecciosas/patologia , Infecções Estreptocócicas/patologia
10.
J Allergy Clin Immunol ; 124(3): 496-506, 506.e1-6, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19733297

RESUMO

BACKGROUND: Mutations in the human filaggrin gene (FLG) are associated with atopic dermatitis (AD) and are presumed to provoke a barrier abnormality. Yet additional acquired stressors might be necessary because the same mutations can result in a noninflammatory disorder, ichthyosis vulgaris. OBJECTIVE: We examined here whether FLG deficiency alone suffices to produce a barrier abnormality, the basis for the putative abnormality, and its proinflammatory consequences. METHODS: By using the flaky-tail mouse, which lacks processed murine filaggrin because of a frameshift mutation in the gene encoding profilaggrin that mimics some mutations in human AD, we assessed whether FLG deficiency provokes a barrier abnormality, further localized the defect, identified its subcellular basis, and assessed thresholds to irritant- and hapten-induced dermatitis. RESULTS: Flaky-tail mice exhibit low-grade inflammation with increased bidirectional, paracellular permeability of water-soluble xenobiotes caused by impaired lamellar body secretion and altered stratum corneum extracellular membranes. This barrier abnormality correlates with reduced inflammatory thresholds to both topical irritants and haptens. Moreover, when exposed repeatedly to topical haptens at doses that produce no inflammation in wild-type mice, flaky-tail mice experience a severe AD-like dermatosis with a further deterioration in barrier function and features of a T(H)2 immunophenotype (increased CRTH levels plus inflammation, increased serum IgE levels, and reduced antimicrobial peptide [mBD3] expression). CONCLUSIONS: FLG deficiency alone provokes a paracellular barrier abnormality in mice that reduces inflammatory thresholds to topical irritants/haptens, likely accounting for enhanced antigen penetration in FLG-associated AD.


Assuntos
Dermatite Atópica/imunologia , Haptenos/imunologia , Proteínas de Filamentos Intermediários/genética , Irritantes/imunologia , Pele/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Carcinógenos/farmacologia , Dermatite Atópica/genética , Proteínas Filagrinas , Imunoglobulina E/sangue , Proteínas de Filamentos Intermediários/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Eletrônica de Transmissão , Oxazolona/farmacologia , Acetato de Tetradecanoilforbol/farmacologia
11.
Endocrinology ; 159(1): 547-556, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29087473

RESUMO

Glucocorticoid (GC) excess drives multiple cutaneous adverse effects, including skin thinning and poor wound healing. The ubiquitously expressed enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) activates mouse corticosterone from 11-dehydrocorticosterone (and human cortisol from cortisone). We previously demonstrated elevated 11ß-HSD1 activity during mouse wound healing, but the interplay between cutaneous 11ß-HSD1 and systemic GC excess is unexplored. Here, we examined effects of 11ß-HSD1 inhibition by carbenoxolone (CBX) in mice treated with corticosterone (CORT) or vehicle for 6 weeks. Mice were treated bidaily with topical CBX or vehicle (VEH) 7 days before wounding and during wound healing. CORT mice displayed skin thinning and impaired wound healing but also increased epidermal integrity. 11ß-HSD1 activity was elevated in unwounded CORT skin and was inhibited by CBX. CORT mice treated with CBX displayed 51%, 59%, and 100% normalization of wound healing, epidermal thickness, and epidermal integrity, respectively. Gene expression studies revealed normalization of interleukin 6, keratinocyte growth factor, collagen 1, collagen 3, matrix metalloproteinase 9, and tissue inhibitor of matrix metalloproteinase 4 by CBX during wound healing. Importantly, proinflammatory cytokine expression and resolution of inflammation were unaffected by 11ß-HSD1 inhibition. CBX did not regulate skin function or wound healing in the absence of CORT. Our findings demonstrate that 11ß-HSD1 inhibition can limit the cutaneous effects of GC excess, which may improve the safety profile of systemic steroids and the prognosis of chronic wounds.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Carbenoxolona/uso terapêutico , Corticosterona/intoxicação , Toxidermias/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Glucocorticoides/intoxicação , Pele/efeitos dos fármacos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Administração Tópica , Animais , Anti-Inflamatórios/intoxicação , Carbenoxolona/administração & dosagem , Carbenoxolona/efeitos adversos , Corticosterona/sangue , Corticosterona/farmacocinética , Citocinas/antagonistas & inibidores , Citocinas/genética , Citocinas/metabolismo , Toxidermias/etiologia , Toxidermias/metabolismo , Toxidermias/patologia , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/efeitos adversos , Epiderme/efeitos dos fármacos , Epiderme/imunologia , Epiderme/metabolismo , Epiderme/patologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/sangue , Glucocorticoides/farmacocinética , Tecido de Granulação/efeitos dos fármacos , Tecido de Granulação/imunologia , Tecido de Granulação/metabolismo , Tecido de Granulação/patologia , Camundongos Pelados , Tamanho do Órgão/efeitos dos fármacos , Pele/lesões , Pele/metabolismo , Pele/patologia , Cicatrização/efeitos dos fármacos
12.
PLoS One ; 11(8): e0161465, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27551807

RESUMO

Harlequin Ichthyosis is a severe skin disease caused by mutations in the human gene encoding ABCA12. Here, we characterize a novel mutation in intron 29 of the mouse Abca12 gene that leads to the loss of a 5' splice donor site and truncation of the Abca12 RNA transcript. Homozygous mutants of this smooth skin or smsk allele die perinatally with shiny translucent skin, typical of animal models of Harlequin Ichthyosis. Characterization of smsk mutant skin showed that the delivery of glucosylceramides and CORNEODESMOSIN was defective, while ultrastructural analysis revealed abnormal lamellar bodies and the absence of lipid lamellae in smsk epidermis. Unexpectedly, mutant stratum corneum remained intact when subjected to harsh chemical dissociation procedures. Moreover, both KALLIKREIN 5 and -7 were drastically decreased, with retention of desmoplakin in mutant SC. In cultured wild type keratinocytes, both KALLIKREIN 5 and -7 colocalized with ceramide metabolites following calcium-induced differentiation. Reducing the intracellular levels of glucosylceramide with a glucosylceramide synthase inhibitor resulted in decreased secretion of KALLIKREIN proteases by wild type keratinocytes, but not by smsk mutant keratinocytes. Together, these findings suggest an essential role for ABCA12 in transferring not only lipids, which are required for the formation of multilamellar structures in the stratum corneum, but also proteolytic enzymes that are required for normal desquamation. Smsk mutant mice recapitulate many of the pathological features of HI and can be used to explore novel topical therapies against a potentially lethal and debilitating neonatal disease.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Ictiose Lamelar/genética , Ictiose Lamelar/patologia , Fenótipo , Pele/metabolismo , Pele/patologia , Alelos , Animais , Sequência de Bases , Ceramidas/metabolismo , Mapeamento Cromossômico , Desmossomos/metabolismo , Modelos Animais de Doenças , Epiderme/metabolismo , Epiderme/patologia , Epiderme/ultraestrutura , Éxons , Genes Recessivos , Glucosilceramidas/metabolismo , Ictiose Lamelar/terapia , Calicreínas/metabolismo , Queratinócitos/metabolismo , Camundongos , Modelos Biológicos , Mutação , Permeabilidade , Análise de Sequência de DNA , Pele/ultraestrutura , Transplante de Pele
13.
JAMA Dermatol ; 151(3): 285-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25565224

RESUMO

IMPORTANCE: Secondary infections and impaired desquamation complicate certain inherited ichthyoses, but their cellular basis remains unknown. In healthy human epidermis, the antimicrobial peptides cathelicidin (LL-37) and human ß-defensin 2 (HBD2), as well as the desquamatory protease kallikrein-related peptidase 7 (KLK7), are delivered to the stratum corneum (SC) interstices by lamellar body (LB) exocytosis. OBJECTIVE: To assess whether abnormalities in the LB secretory system could account for increased risk of infections and impaired desquamation in inherited ichthyoses with known abnormalities in LB assembly (Harlequin ichthyosis [HI]), secretion (epidermolytic ichthyosis [EI]), or postsecretory proteolysis (Netherton syndrome [NS]). DESIGN, SETTING, AND PARTICIPANTS: Samples from library material were taken from patients with HI, EI, NS, and other ichthyoses, but with a normal LB secretory system, and in healthy controls and were evaluated by electron microscopy and immunohistochemical analysis from July 1, 2010, through March 31, 2013. MAIN OUTCOME AND MEASURES: Changes in LB secretion and in the fate of LB-derived enzymes and antimicrobial peptides in ichthyotic patients vs healthy controls. RESULTS: In healthy controls and patients with X-linked ichthyosis, neutral lipid storage disease with ichthyosis, and Gaucher disease, LB secretion is normal, and delivery of LB-derived proteins and LL-37 immunostaining persists high into the SC. In contrast, proteins loaded into nascent LBs and their delivery to the SC interstices decrease markedly in patients with HI, paralleled by reduced immunostaining for LL-37, HBD2, and KLK7 in the SC. In patients with EI, the cytoskeletal abnormality impairs the exocytosis of LB contents and thus results in decreased LL-37, HBD2, and KLK7 secretion, causing substantial entombment of these proteins within the corneocyte cytosol. Finally, in patients with NS, although abundant enzyme proteins loaded in parallel with accelerated LB production, LL-37 disappears, whereas KLK7 levels increase markedly in the SC. CONCLUSIONS AND RELEVANCE: Together, these results suggest that diverse abnormalities in the LB secretory system account for the increased risk of secondary infections and impaired desquamation in patients with HI, EI, and NS.


Assuntos
Exocitose , Ictiose/complicações , Dermatopatias Infecciosas/etiologia , Pele/patologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Estudos de Casos e Controles , Humanos , Ictiose/genética , Ictiose/patologia , Imuno-Histoquímica , Calicreínas/metabolismo , Microscopia Eletrônica , Dermatopatias Infecciosas/patologia , beta-Defensinas/metabolismo , Catelicidinas
14.
Tissue Eng Part C Methods ; 21(1): 15-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24803151

RESUMO

Multilayered human keratinocyte cultures increasingly are used to model human epidermis. Until now, studies utilizing human epidermal equivalents (HEEs) have been limited because previous preparations do not establish a normal epidermal permeability barrier. In this report, we show that reducing environmental humidity to 50% relative humidity yields HEEs that closely match human postnatal epidermis and have enhanced repair of the permeability barrier. These cultures display low transepidermal water loss and possess a calcium and pH gradient that resembles those seen in human epidermis. These cultures upregulate glucosylceramide synthase and make normal-appearing lipid lamellar bilayers. The epidermal permeability barrier of these cultures can be perturbed, using the identical tools previously described for human skin, and recover in the same time course seen during in vivo barrier recovery. These cultures will be useful for basic and applied studies on epidermal barrier function.


Assuntos
Epiderme/crescimento & desenvolvimento , Epiderme/fisiologia , Umidade , Células Cultivadas , Células Epidérmicas , Epiderme/ultraestrutura , Regulação da Expressão Gênica , Humanos , Recém-Nascido , Íons , Masculino , Proteínas/metabolismo
15.
J Endocrinol ; 221(1): 51-61, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24464022

RESUMO

Glucocorticoid (GC) excess inhibits wound healing causing increased patient discomfort and infection risk. 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) activates GCs (converting 11-dehydrocorticosterone to corticosterone in rodents) in many tissues including skin, where de novo steroidogenesis from cholesterol has also been reported. To examine the regulation of 11ß-HSD1 and steroidogenic enzyme expression during wound healing, 5 mm wounds were generated in female SKH1 mice and compared at days 0, 2, 4, 8, 14, and 21 relative to unwounded skin. 11ß-HSD1 expression (mRNA and protein) and enzyme activity were elevated at 2 and 4 days post-wounding, with 11ß-HSD1 localizing to infiltrating inflammatory cells. 11ß-HSD2 (GC-deactivating) mRNA expression and activity were undetectable. Although several steroidogenic enzymes displayed variable expression during healing, expression of the final enzyme required for the conversion of 11-deoxycorticosterone to corticosterone, 11ß-hydroxylase (CYP11B1), was lacking in unwounded skin and post-wounding. Consequently, 11-deoxycorticosterone was the principal progesterone metabolite in mouse skin before and after wounding. Our findings demonstrate that 11ß-HSD1 activates considerably more corticosterone than is generated de novo from progesterone in mouse skin and drives GC exposure during healing, demonstrating the basis for 11ß-HSD1 inhibitors to accelerate wound repair.


Assuntos
Glucocorticoides/metabolismo , Fenômenos Fisiológicos da Pele , Cicatrização , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Animais , Feminino , Humanos , Camundongos , Camundongos Pelados , Receptores de Glucocorticoides/metabolismo , Pele/enzimologia
16.
J Invest Dermatol ; 134(12): 2890-2897, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24991965

RESUMO

Acute psychological stress (PS) mobilizes metabolic responses that are of immediate benefit to the host, but the current medical paradigm holds that PS exacerbates systemic and cutaneous inflammatory disorders. Although the adverse consequences of PS are usually attributed to neuroimmune mechanisms, PS also stimulates an increase in endogenous glucocorticoids (GCs) that compromises permeability barrier homeostasis, stratum corneum cohesion, wound healing, and epidermal innate immunity in normal skin. Yet, if such PS-induced increases in GC were uniformly harmful, natural selection should have eliminated this component of the stress response. Hence, we hypothesized here instead that stress-induced elevations in endogenous GC could benefit, rather than aggravate, cutaneous function and reduce inflammation in three immunologically diverse mouse models of inflammatory diseases. Indeed, superimposed exogenous (motion-restricted) stress reduced, rather than aggravated inflammation and improved epidermal function in all three models, even normalizing serum IgE levels in the atopic dermatitis model. Elevations in endogenous GC accounted for these apparent benefits, because coadministration of mifepristone prevented stress-induced disease amelioration. Thus, exogenous stress can benefit rather than aggravate cutaneous inflammatory dermatoses through the anti-inflammatory activity of increased endogenous GC.


Assuntos
Glucocorticoides/metabolismo , Dermatopatias/metabolismo , Dermatopatias/psicologia , Pele/metabolismo , Estresse Psicológico/metabolismo , Animais , Permeabilidade da Membrana Celular/fisiologia , Modelos Animais de Doenças , Feminino , Homeostase/fisiologia , Imunidade Inata/fisiologia , Imunoglobulina E/sangue , Masculino , Camundongos , Camundongos Pelados , Camundongos Endogâmicos C57BL , Pele/fisiopatologia , Dermatopatias/fisiopatologia , Estresse Psicológico/fisiopatologia , Cicatrização/fisiologia
17.
Stem Cell Reports ; 2(5): 675-89, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24936454

RESUMO

Cornification and epidermal barrier defects are associated with a number of clinically diverse skin disorders. However, a suitable in vitro model for studying normal barrier function and barrier defects is still lacking. Here, we demonstrate the generation of human epidermal equivalents (HEEs) from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). HEEs are structurally similar to native epidermis, with a functional permeability barrier. We exposed a pure population of hESC/iPSC-derived keratinocytes, whose transcriptome corresponds to the gene signature of normal primary human keratinocytes (NHKs), to a sequential high-to-low humidity environment in an air/liquid interface culture. The resulting HEEs had all of the cellular strata of the human epidermis, with skin barrier properties similar to those of normal skin. Such HEEs generated from disease-specific iPSCs will be an invaluable tool not only for dissecting molecular mechanisms that lead to epidermal barrier defects but also for drug development and screening.


Assuntos
Células-Tronco Embrionárias/metabolismo , Epiderme/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Reprogramação Celular , Metilação de DNA , Células-Tronco Embrionárias/citologia , Transição Epitelial-Mesenquimal , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Queratina-14/genética , Queratina-14/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Permeabilidade , Análise de Componente Principal , Teratoma/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
18.
J Invest Dermatol ; 134(9): 2399-2407, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24732399

RESUMO

Humans with darkly pigmented skin display superior permeability barrier function in comparison with humans with lightly pigmented skin. The reduced pH of the stratum corneum (SC) of darkly pigmented skin could account for enhanced function, because acidifying lightly pigmented human SC resets barrier function to darkly pigmented levels. In SKH1 (nonpigmented) versus SKH2/J (pigmented) hairless mice, we evaluated how a pigment-dependent reduction in pH could influence epidermal barrier function. Permeability barrier homeostasis is enhanced in SKH2/J versus SKH1 mice, correlating with a reduced pH in the lower SC that colocalizes with the extrusion of melanin granules. Darkly pigmented human epidermis also shows substantial melanin extrusion in the outer epidermis. Both acute barrier disruption and topical basic pH challenges accelerate reacidification of SKH2/J (but not SKH1) SC, while inducing melanin extrusion. SKH2/J mice also display enhanced expression of the SC acidifying enzyme, secretory phospholipase A2f (sPLA2f). Enhanced barrier function of SKH2/J mice could be attributed to enhanced activity of two acidic pH-dependent, ceramide-generating enzymes, ß-glucocerebrosidase and acidic sphingomyelinase, leading to accelerated maturation of SC lamellar bilayers. Finally, organotypic cultures of darkly pigmented human keratinocytes display enhanced barrier function in comparison with lightly pigmented cultures. Together, these results suggest that the superior barrier function of pigmented epidermis can be largely attributed to the pH-lowering impact of melanin persistence/extrusion and enhanced sPLA2f expression.


Assuntos
Ácidos/metabolismo , Epiderme/metabolismo , Fosfolipases A2 do Grupo II/metabolismo , Homeostase/genética , Melanócitos/metabolismo , Pigmentação da Pele/fisiologia , Animais , Ceramidas/biossíntese , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/ultraestrutura , Células Epidérmicas , Feminino , Glucosilceramidase/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Queratinócitos/metabolismo , Bicamadas Lipídicas/metabolismo , Masculino , Melaninas/metabolismo , Melanócitos/ultraestrutura , Camundongos Pelados , Microscopia Eletrônica , Técnicas de Cultura de Órgãos , Comunicação Parácrina/fisiologia , Permeabilidade , Esfingomielina Fosfodiesterase/metabolismo
19.
Mol Cell Biol ; 33(4): 752-62, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23230267

RESUMO

A variety of external perturbations can induce endoplasmic reticulum (ER) stress, followed by stimulation of epithelial cells to produce an innate immune element, the cathelicidin antimicrobial peptide (CAMP). ER stress also increases production of the proapoptotic lipid ceramide and its antiapoptotic metabolite, sphingosine-1-phosphate (S1P). We demonstrate here that S1P mediates ER stress-induced CAMP generation. Cellular ceramide and S1P levels rose in parallel with CAMP levels following addition of either exogenous cell-permeating ceramide (C2Cer), which increases S1P production, or thapsigargin (an ER stressor), applied to cultured human skin keratinocytes or topically to mouse skin. Knockdown of S1P lyase, which catabolizes S1P, enhanced ER stress-induced CAMP production in cultured cells and mouse skin. These and additional inhibitor studies show that S1P is responsible for ER stress-induced upregulation of CAMP expression. Increased CAMP expression is likely mediated via S1P-dependent NF-κB-C/EBPα activation. Finally, lysates of both ER-stressed and S1P-stimulated cells blocked growth of virulent Staphylococcus aureus in vitro, and topical C2Cer and LL-37 inhibited invasion of Staphylococcus aureus into murine skin. These studies suggest that S1P generation resulting in increased CAMP production comprises a novel regulatory mechanism of epithelial innate immune responses to external perturbations, pointing to a new therapeutic approach to enhance antimicrobial defense.


Assuntos
Catelicidinas/imunologia , Imunidade Inata , Queratinócitos/imunologia , Lisofosfolipídeos/imunologia , Pele/imunologia , Esfingosina/análogos & derivados , Animais , Peptídeos Catiônicos Antimicrobianos , Proteína alfa Estimuladora de Ligação a CCAAT/imunologia , Catelicidinas/genética , Células Cultivadas , Ceramidas/imunologia , Estresse do Retículo Endoplasmático , Regulação da Expressão Gênica , Humanos , Queratinócitos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , Pele/microbiologia , Esfingosina/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/imunologia
20.
J Invest Dermatol ; 133(8): 1942-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23856934

RESUMO

We recently discovered a regulatory mechanism that stimulates the production of the multifunctional antimicrobial peptide cathelicidin antimicrobial peptide (CAMP). In response to subtoxic levels of ER stress, increased sphingosine-1-phosphate (S1P) production activates an NFκBC/EBPα-dependent pathway that enhances CAMP production in cultured human keratinocytes. As the multifunctional stilbenoid compound resveratrol (RESV) increases ceramide (Cer) levels, a precursor of S1P, we hypothesized and assessed whether RESV could exploit the same pathway to regulate CAMP production. Accordingly, RESV significantly increased Cer and S1P levels in cultured keratinocytes, paralleled by increased CAMP mRNA/protein expression. Furthermore, topical RESV also increased murine CAMP mRNA/protein expression in mouse skin. Conversely, blockade of Cer-->sphingosine-->S1P metabolic conversion, with specific inhibitors of ceramidase or sphingosine kinase, attenuated the expected RESV-mediated increase in CAMP expression. The RESV-induced increase in CAMP expression required both NF-κB and C/EBPα transactivation. Moreover, conditioned media from keratinocytes treated with RESV significantly suppressed Staphylococcus aureus growth. Finally, topical RESV, if not coapplied with a specific inhibitor of sphingosine kinase, blocked S. aureus invasion into murine skin. These results demonstrate that the dietary stilbenoid RESV stimulates S1P signaling of CAMP production through an NF-κB-->C/EBPα-dependent mechanism, leading to enhanced antimicrobial defense against exogenous microbial pathogens.


Assuntos
Antioxidantes/farmacologia , Catelicidinas/metabolismo , Lisofosfolipídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Estilbenos/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Catelicidinas/imunologia , Linhagem Celular Transformada , AMP Cíclico/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/imunologia , Células Epidérmicas , Epiderme/efeitos dos fármacos , Epiderme/imunologia , Feminino , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Camundongos , Camundongos Pelados , NF-kappa B/metabolismo , Resveratrol , Transdução de Sinais/imunologia , Esfingosina/metabolismo , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Infecções Cutâneas Estafilocócicas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA