RESUMO
This paper presents the design and realization of a flexible and frequency-reconfigurable antenna with harmonic suppression for multiple wireless applications. The antenna structure is derived from a quarter-wave monopole by etching slots. Afterward, the high-order unwanted harmonics are eliminated by adding a filtering stub to the feedline to avoid signal interference. Lastly, frequency reconfigurability is achieved using pin diodes by connecting and disconnecting the stubs and the rectangular patch. The antenna is fabricated on the commercially available thin (0.254 mm) conformal substrate of Rogers RT5880. The proposed antenna resonates (|S11| < −10 dB) at five different reconfigurable bands of 3.5 GHz (3.17−3.82 GHz), 2.45 GHz (2.27−2.64 GHz), 2.1 GHz (2.02−2.29 GHz), 1.9 GHz (1.81−2.05 GHz), and 1.8 GHz (1.66−1.93 GHz), which are globally used for 5G sub-6 GHz in industrial, medical, and scientific (ISM) bands, 4G long-term evolution (LTE) bands, and global system for mobile communication (GSM) bands. The simulated and measured results show that the antenna offers excellent performance in terms of good impedance matching with controllable resonant bands, high gain (>2 dBi), stable radiation patterns, and efficiency (>87%). Moreover, the conformal analysis shows that the antenna retains its performance both in flat and bending conditions, making it suitable for flexible electronics. In addition, the antenna is compared with the state-of-the-art works for similar applications to show its potential for the targeted band spectrums.
RESUMO
In this paper, a wideband circularly polarized (CP) magnetoelectric (ME) dipole antenna operating at 28 GHz band was proposed for 5G millimeter-wave (mm-wave) communications. The antenna geometry included two metallic plates with extended hook-shaped strips at its principal diagonal position, and two corners of truncated metallic plates at the secondary diagonal position. The pair of metallic vias connected the modified strips to the ground plane to create the magnetic dipole. The L-shaped probe feed between the strips was used to excite the antenna. The antenna showed stable gain and wideband characteristics. The simulated and measured results showed that the proposed CP ME dipole antenna had an overlapping (|S11|< −10 dB impedance and 3 dB axial ratio) bandwidth of 18.1% (25−30 GHz), covering the frequency bands dedicated for 5G new radio communications. Moreover, an average gain of 8 dBic was achieved by the antenna throughout the operating bandwidth. The measured data verified the design concept, and the proposed antenna had a small footprint of 0.83 λo × 0.83 λo × 0.125 λo (λo is free space wavelength at the lowest operating frequency), suitable for its application in 5G smart devices and sensors.
RESUMO
A compact and triple-band polarization converting reflective type metasurface (PCRM) with a high polarization conversion ratio (PCR) is proposed for strategic wireless antenna-integrated applications. The unit cell of the metasurface is composed of S- and G-shaped patches separated with a parasitic gap and the grounded via is connected to the full ground plane. The unit cell is etched on an FR4 substrate (dielectric constant, εr = 4.4, loss tangent, tan δ = 0.02), with compact dimensions of 10 mm3 × 10 mm3 × 1.6 mm3. This structure provides a resonance at 5.2 (ISM), 6.9, and 8.05 GHz (X-band) frequencies. The designed unit cell structure is studied for Transverse Electric (TE)/Transverse Magnetic (TM) incident waves and their responses to the various incident angles. The corresponding PCR is calculated, which shows 92% in the lower frequency band (5.2 GHz), 93% in the second frequency band (6.9 GHz), and 94% in the high-frequency band (8.05 GHz). The total efficiency of the structure shows 83.2%, 62.95%, and 64.6% at the respective resonance bands. A prototype of the proposed PCRM with 3 × 3 unit cells is fabricated to validate the simulated results. The experimental data agrees with the simulation results. The compactness, triple-band operation with a high PCR value of more than 92% makes use of the designed metasurface in wireless antenna-integrated applications at ISM and X-bands.
Assuntos
Eletricidade , Tecnologia sem Fio , Humanos , Simulação por Computador , Refração Ocular , Translocação GenéticaRESUMO
A compact flexible multi-frequency antenna for smart portable and flexible devices is presented. The antenna consists of a coplanar waveguide-fed slotted circular patch connected to a rectangular secondary resonator (stub). A thin low-loss substrate is used for flexibility, and a rectangular stub in the feedline is deployed to attain wide operational bandwidth. A rectangular slot is etched in the middle of the circular patch, and a p-i-n diode is placed at its center. The frequency reconfigurability is achieved through switching the diode that distributes the current by changing the antenna's electrical length. For the ON state, the antenna operates in the UWB region for -10 dB impedance bandwidth from 2.76 to 8.21 GHz. For the OFF state of the diode, the antenna operates at the ISM band (2.45/5.8 GHz), WLAN band (5.2 GHz), and lower X-band (8 GHz) with a minimum gain of 2.49 dBi and a maximum gain of 5.8 dBi at the 8 GHz band. Moreover, the antenna retains its performance in various bending conditions. The proposed antenna is suitable for modern miniaturized wireless electronic devices such as wearables, health monitoring sensors, mobile Internet devices, and laptops that operate at multiple frequency bands.
RESUMO
This paper presents the performance improvement of a co-planar waveguide rectangularly notched UWB-MIMO antenna. The isolation and gain of the antenna are enhanced by using a parasitic isolator. The antenna consists of four microstrip patch antennas and an isolator. The UWB characteristic of the antenna is achieved by truncating the lower ends of the radiating patch by a semicircle. The rectangular notch characteristic is obtained by adding two electromagnetic bandgap structures on the backside of the antenna, which is attached to the radiator via shorting pin. The performance, especially the decoupling of the MIMO antenna is improved by using a novel parasitic decoupler, which is placed between the antennas to receive uncorrelated signals. The decoupling structure consists of a square shape metallic element with a circular slot inside and a half-semicircle slot edged at each corner. Four rectangular metallic stubs are extended from opposite parallel sides to improve further isolation. The simulated and measured results show that the antenna has a rectangular notch band (5.25-5.85 GHz) across the working band of 3-12.8 GHz. In addition, the antenna has a planar structure with an overall size of 60 × 60 × 1.52 mm3 and offers stable gain, reduced mutual coupling (<-21 dB), and lower envelop correlation (<0.001).
RESUMO
This work presents the design and fabrication of a metamaterial-based stimulated dual band antenna on FR4 material (dielectric constant 4.3) to operate in Industrial, Scientific and Medical (ISM) and Radio-frequency Identification (RFID) applications. The antenna model had an overall dimension of 70 × 31 × 1.6 mm3 with etched T-slots and L-slots for dual band resonance. The main objective of this work was to enhance the gain performance characteristic at the selected dual band frequencies of 0.915 GHz and 2.45 GHz. Initially, it achieved a narrow bandwidth of 0.018 GHz with a gain of 1.53 dBi at a lower frequency, and 0.13 GHz of bandwidth featuring 4.49 dBi of gain at a higher frequency. The antenna provided an impedance bandwidth of 2% (0.905-0.923 GHz) and 5% (2.382-2.516 GHz) at two resonating frequencies. The antenna was integrated with a designed novel AMC structure to enhance the gain in CST Microwave Studio software with the finite integration method. The characteristic features of the AMC unit cell were observed at 0.915 GHz and 2.45 GHz frequencies and after antenna integration, the final prototype achieved a gain of 2.87 dBi at 0.915 GHz and 6.8 dBi at 2.45 GHz frequencies.
Assuntos
Dispositivo de Identificação por Radiofrequência , Tecnologia sem Fio , Desenho de Equipamento , Micro-OndasRESUMO
In this paper, a folded slot-based multiple-input-multiple-output (MIMO) antenna design for Cube Satellite (CubeSat) applications is presented for the ultra-high frequency (UHF) band. A unique combination of a reactively loaded meandered slot with a folded structure is presented to achieve the antenna's miniaturization. The proposed antenna is able to operate over a wide frequency band from 430~510 MHz. Moreover, pattern diversity is achieved by the antenna's element placement, resulting in good MIMO diversity performance. The four elements are placed on one Unit (1U) for CubeSat dimensions of 100 mm × 100 mm × 100 mm. The miniaturized antenna design with pattern diversity over a wide operating band is well suited for small satellite applications, particularly CubeSats in the UHF band.
Assuntos
Tecnologia sem FioRESUMO
A simple dual-band patch antenna with paired L-shap slots for on- and off-body communications has been presented in this article. The proposed antenna resonates in the industrial, scientific, and medical (ISM) band at two different frequencies, at 2.45 GHz and 5.8 GHz. At the lower frequency band, the antenna's radiation pattern is broadsided directional, whereas it is omni-directional at the higher frequency band. The efficiency and performance of the proposed antenna under the influence of the physical body are improved, and the specific absorption rate (SAR) value is significantly reduced by creating a full ground plane behind the substrate. The substrate's material is FR-4, the thickness of which is 1.6 mm and it has a loss tangent of tanδ = 0.02. The overall size of the proposed design is 40 mm × 30 mm × 1.6 mm. Physical phantoms, such as skin, fat and muscle, are used to evaluate the impact of physical layers at 2.45 GHz and 5.8 GHz. The SAR values are assessed and found to be 0.19 W/kg and 1.18 W/kg at 2.45 GHz and 5.8 GHz, respectively, over 1 gram of mass tissue. The acquired results indicate that this antenna can be used for future on- and off-body communications and wireless services.
Assuntos
Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Comunicação , Desenho de Equipamento , Imagens de FantasmasRESUMO
This paper presents the design and realization of a compact ultra-wideband (UWB) antenna with a rectangular notch wireless area network (WLAN) band that has controllable notched bandwidth and center frequency. The UWB characteristics of the antenna are achieved by truncating the lower ends of the rectangular microstrip patch, and the notch characteristics are obtained by using electromagnetic bandgap (EBG) structures. EBGs consist of two rectangular metallic conductors loaded on the back of the radiator, which is connected to the patch by shorting pins. A rectangular notch at the WLAN band with high selectivity is realized by tuning the individual resonant frequencies of the EBGs and merging them. Furthermore, the results show that the bandwidth and frequency of the rectangular notch band could be controlled according to the on-demand rejection band applications. In the demonstration, the rectangular notch band was shifted to X-band satellite communication by tuning the EBG parameters. The simulated and measured results show that the proposed antenna has an operational bandwidth from 3.1-12.5 GHz for |S11| < -10 with a rectangular notch band from 5-6 GHz, thus rejecting WLAN band signals. The antenna also has additional advantages: the overall size of the compact antenna is 16 × 25 × 1.52 mm3 and it has stable gain and radiation patterns.
RESUMO
This work demonstrates an integrated multiple-input multiple-output (MIMO) antenna solution for Long Term Evolution (LTE) and Millimeter-Wave (mm-wave) 5G wireless communication services. The proposed structure is comprised of a two-element LTE MIMO antenna, and a four-element 5G MIMO configuration with rectangular and circular defects in the ground plane. For experimental validation, the proposed structure is fabricated on a Rogers RO4350B substrate with 0.76 mm thickness. The overall substrate dimensions are 75 mm × 110 mm. The proposed structure is capable of operating at 5.29-6.12 GHz (LTE 46 and 47 bands) and 26-29.5 GHz (5G mm-wave) frequency bands. Additionally, the measured peak gain of 5.13 and 9.53 dB is attained respectively for the microwave and mm-wave antennas. Furthermore, the analysis of the MIMO performance metrics demonstrates good characteristics, and excellent field correlation performance across the operating bands. Furthermore, the analysis of the Specific Absorption Rate (SAR) and Power Density (PD) at the lower frequency band (5.9 GHz) and PD only at mm-Wave frequency band (28 GHz) verifies that the proposed antenna system satisfies the international human safety standards. Therefore, the proposed integrated MIMO antenna configuration ascertains to be a potential contender for the forthcoming communication applications.
RESUMO
This paper presents a conformal, miniaturized, and geometrically simple monopole antenna designed for Vehicle-to-Everything (V2X) communications. The antenna consists of a flexible substrate, radiating patch, ground, and metallic stubs. Meandered lines are added to the U-shaped radiator to achieve the required bandwidth of the antenna. The antenna has |S11|< -10 dB magnitude from 5.06 to 7.24 GHz, attaining a peak low magnitude of-68 dB. The antenna is configured into a 4-port Multiple-Input-Multiple-Output (MIMO) setup to minimize the mutual coupling between its elements. The proposed flexible MIMO antenna offers bandwidth from 5.37 to 7.34 GHz and a peak moderate gain of 4.63 dBi with omnidirectional stable radiation patterns. To improve the mutual coupling, two hollow concentric circular structures, in combination with a pair of stub networks are integrated between the elements of the MIMO system. The transmission coefficient and surface current analysis confirm the effectiveness of the decoupling structure. The presented MIMO antenna is characterized by high isolation, a low envelope correlation coefficient (ECC), and high diversity gain, suitable for V2X MIMO communication scenarios.
RESUMO
In this article, an ultra-wideband (UWB) antenna featuring two reconfigurable quasi-perfect stop bands at WLAN (5.25-5.75 GHz) and lower 5G (3.4-3.8 GHz) utilizing electromagnetic bandgaps (EBGs) and positive-intrinsic-negative (P-I-N) diodes is proposed. A pair of EBG structures are applied to generate sharp notch bands in the targeted frequency spectrum. Each EBG creates a traditional notch, while two regular notches are combined to make a quasi-perfect, sharp, notch band. Four P-I-N diodes are engraved into the EBG structures to enable notch band reconfigurability. By switching the operational condition of the four diodes, the UWB antenna can dynamically adjust its notching characteristics to enhance its adaptability to various communication standards and applications. The antenna can be reconfigured as a UWB (3-11.6 GHz) without any notch band, a UWB with a single sharp notch (either at WLAN or 5G), or a UWB with two quasi-perfect notch bands. Moreover, the antenna's notch bands can also be switched from a traditional notch to a quasi-perfect notch and vice versa. To confirm the validity of the simulated outcomes, the proposed reconfigurable UWB antenna is fabricated and measured. The experimental findings are aligned closely with simulation results, and the antenna offers notch band reconfigurability. The antenna shows a consistently favorable radiation pattern and gain. The dimension of the presented antenna is 20 × 27 × 1.52 mm3 (0.45 λc × 0.33 λc × 0.025 λc, where λc is the wavelength in free space).
RESUMO
This article presents the design and implementation of a dipole array antenna based on a radial waveguide power divider for millimeter-wave IoT sensing applications. The dipole array and radial waveguide power divider techniques are used in tandem to achieve high gain with omnidirectional radiation properties. The proposed antenna is comprised of eight non-uniform array dipole structures, a circular radiating loop, and shorting vias. The one-to-eight power divider is created with the shorting vias to feed the circularly arranged eight non-uniform dipole arrays simultaneously. The proposed antenna is simulated and manufactured on Rogers-RO3003C substrate with a thickness of 8 mils. Both simulated and tested results confirm that the proposed method enables the antenna to offer a quasi-omnidirectional pattern with a high peak gain of 5.42 dBi. The antenna offers an impedance bandwidth (S11 < â 10 dB) of more than 1 GHz ranging from 27.93 to 29.13 GHz. Moreover, by optimizing the parameters of the power divider network the proposed antenna can be tuned between a wide bandwidth range of 14.53 GHz as the designed dipole array offering the operating bandwidth from 25.56 to 40.09 GHz. Due to its comprehensive set of performance attributes, particularly for the quasi-omnidirectional radiation characteristics, the presented antenna is a viable candidate for the 5G millimeter wave wireless IoT sensing applications. Additionally, this work will accommodate other researchers to explore the proposed method for developing high-gain omnidirectional antennas for millimeter-wave applications.
RESUMO
This paper presents the design and isolation enhancement of a filtering MIMO antenna with a radiation null for out-of-band suppressions suited for 5G sub-6 GHz communications. The MIMO antenna offers -10 dB impedance bandwidth functionality at the most prominent partial spectrum of the 5G NR n78 band for enabling wireless applications in base stations, ranging from 3.4 GHz to 3.61 GHz. To mitigate the redundancy of an RF filter and to achieve a strong filtering response, a radiation null is produced in the gain with four identical rectangular slots, which results in a significant gain drop of more than 8 dBi at the stopband. The geometrical design also allows 30 percent size reduction of single element. Subsequently, a closely spaced (0.11λ0) two-port MIMO antenna is implemented and with the utilization of the proposed rectangular shaped hollow stub parasitic element, the interelement isolation is significantly improved by more than 8 dB over the operational frequency range while retaining the filtering without any additional RF structure. The design simplification, peak gain of 5.4 dBi, near ideal response of diversity gain, ECC less than 0.03, congruency between simulated and measured results, and stable parameters make it a valuable choice for 3.5 GHz sub-6 GHz communications.
Assuntos
Tecnologia sem Fio , Tecnologia sem Fio/instrumentação , Desenho de Equipamento , Ondas de RádioRESUMO
A conformal tri-band antenna tailored for flexible devices and body-centric wireless communications operating at the key frequency bands is proposed. The antenna is printed on a thin Rogers RT 5880 substrate, merely 0.254 mm thick, with an overall geometrical dimension of 15 × 20 × 0.254 mm3. This inventive design features a truncated corner monopole accompanied by branched stubs fed by a coplanar waveguide. The stubs, varying in length, serve as quarter-wavelength monopoles, facilitating multi-band functionality at 2.45, 3.5, and 5.8 GHz. Given the antenna's intended applications in flexible devices and body-centric networks, the conformability of the proposed design is investigated. Furthermore, an in-depth analysis of the Specific Absorption Rate (SAR) is conducted using a four-layered human tissue model. Notably, the SAR values for the proposed geometry at 2.45, 3.5, and 5.8 GHz stand at 1.48, 1.26, and 1.1 W/kg for 1 g of tissue, and 1.52, 1.41, and 0.62 W/kg for 10 g of tissue, respectively. Remarkably, these values comfortably adhere to both FCC and European Union standards, as they remain substantially beneath the threshold values of 1.6 W/kg and 2 W/kg for 1 g and 10 g tissues, respectively. The radiation characteristics and performance of the antenna in flat and different bending configurations validate the suitability of the antenna for flexible devices and body-centric wireless communications.
RESUMO
Metamaterials exhibit properties in terms of subwavelength operation or phase manipulation, among others, that can be used in a variety of applications in 5G communication systems. The future and current 5G devices demand high efficiency, high data rate, computational capabilities, cost-effectiveness, compact size, and low power consumption. This variation and advancement are possible when the antenna design is revised to operate over wideband, high gain, and multiband and has characteristics of compact size, reconfiguration, absorption, and simple ease of fabrication. The materials loaded with antennas or, in the same cases, without antennas, offer the aforementioned characteristics to bring advancement in order to facilitate users. A number of works on designing metasurfaces capable of improving bandwidth, gain efficiency, and reducing the size and cost of antennas are available in the literature for this purpose. Not only are these applications possible, but the intelligent metasurfaces are also designed to obtain reconfiguration in terms of frequency and polarization. The number of absorbers loaded with metamaterials is also designed to improve the absorption percentage used for radar applications. Thus, in this paper, the general overview of different types of metamaterials and their role in performance enhancement and application in 5G and 6G communication systems is discussed.
RESUMO
In this article, a single-layer frequency selective surface (FSS)-loaded compact coplanar waveguide (CPW)-fed antenna is proposed for very high-gain and ultra-wideband applications. At the initial stage, a geometrically simple ultra-wideband (UWB) antenna is designed which contains CPW feed lines and a multi-stub-loaded hexagonal patch. The various stubs are inserted to improve the bandwidth of the radiator. The antenna operates at 5-17 GHz and offers 6.5 dBi peak gain. Subsequently, the proposed FSS structure is designed and loaded beneath the proposed UWB antenna to improve bandwidth and enhance gain. The antenna loaded with FSS operates at an ultra-wideband of 3-18 GHz and offers a peak gain of 10.5 dBi. The FSS layer contains 5 × 5 unit cells with a total dimension of 50 mm × 50 mm. The gap between the FSS layer and UWB antenna is 9 mm, which is fixed to obtain maximum gain. The proposed UWB antenna and its results are compared with the fabricated prototype to verify the results. Moreover, the performance parameters such as bandwidth, gain, operational frequency, and the number of FSS layers used in the proposed antenna are compared with existing literature to show the significance of the proposed work. Overall, the proposed antenna is easy to fabricate and has a low profile and simple geometry with a compact size while offering a very wide bandwidth and high gain. Due to all of its performance properties, the proposed antenna system is a strong candidate for upcoming wideband and high-gain applications.
RESUMO
In this letter, a compact, planar circularly polarized (CP) sub-GHz slot-based multiple-input-multiple-output (MIMO) antenna with dual sense CP along with polarization bandwidth reconfigurability is presented. The pentagonal reactively loaded slot is fed by two folded tapered feedlines to achieve CP. The antenna offers left-hand-circular polarization (RHCP) with the as well as right hand circular polarization (LHCP). The antenna exhibit linearly polarization (LP) by exciting two ports simultaneously. Moreover, the antenna CP resonance can be reconfigured by varying the capacitance of the varactor diode. The antenna has a wide -10 dB operating frequency band from 578-929 MHz. while the axial ratio (AR) bandwidth ranges from 490-810 MHz. Moreover, the two elements MIMO are optimized and placed on compact dimensions 100 × 100 × 0.76 mm3 to realize pattern diversity. The antenna's key characteristics are compact size, wide-band sub-GHz operation, dual sense CP, polarization bandwidth reconfigurability and good MIMO performance. Thus, it is a suitable candidate to be utilized in CubeSats applications in sub-GHz bands.
RESUMO
A compact, conformal, all-textile wearable antenna is proposed in this paper for the 2.45 GHz ISM (Industrial, Scientific and Medical) band. The integrated design consists of a monopole radiator backed by a 2 × 1 Electromagnetic Band Gap (EBG) array, resulting in a small form factor suitable for wristband applications. An EBG unit cell is optimized to work in the desired operating band, the results of which are further explored to achieve bandwidth maximization via floating EBG ground. A monopole radiator is made to work in association with the EBG layer to produce the resonance in the ISM band with plausible radiation characteristics. The fabricated design is tested for free space performance analysis and subjected to human body loading. The proposed antenna design achieves bandwidth of 2.39 GHz to 2.54 GHz with a compact footprint of 35.4 × 82.4 mm2. The experimental investigations reveal that the reported design adequately retains its performance while operating in close proximity to human beings. The presented Specific Absorption Rate (SAR) analysis reveals 0.297 W/kg calculated at 0.5 W input power, which certifies that the proposed antenna is safe for use in wearable devices.
RESUMO
In this paper, a 12x12 dual-band MIMO antenna for 5G smartphones is proposed. It operates in the sub 6 GHz (2.4GHz and 3.5GHz) frequency bands. The MIMO antenna elements are printed on an FR4 epoxy substrate that has a thickness of 0.8mm. The main substrate measures 150 × 75 × 0.8 mm3, while the side substrates have dimensions of 75 × 6 × 0.8mm3. The twelve dual-band antenna elements are compact in size. Each antenna element size is reduced significantly, which is 11.20 × 5.98 mm2(0.0896λ × 0.04784λ). These antenna elments are arranged in such a way that the MIMO antenna not only provides polarization diversity but also helps in achieving good performance in terms of isolation, which is more than 13.5 dB between two adjacent antenna elements. Another significance of the proposed antenna is that both the frequency bands can be tuned independently by varying the corresponding length of each arm. The performance parameters like efficiency is around 40-56% for the lower band and it is 48-62% for the upper band. The envelope correlation coefficient (ECC) is below 0.04 in both frequency bands for the proposed dual band MIMO antenna.