Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(23): 230602, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563207

RESUMO

Although the Bethe ansatz solution of the spin-1/2 Heisenberg model dates back nearly a century, the anomalous nature of its high-temperature transport dynamics has only recently been uncovered. Indeed, numerical and experimental observations have demonstrated that spin transport in this paradigmatic model falls into the Kardar-Parisi-Zhang (KPZ) universality class. This has inspired the significantly stronger conjecture that KPZ dynamics, in fact, occur in all integrable spin chains with non-Abelian symmetry. Here, we provide extensive numerical evidence affirming this conjecture. Moreover, we observe that KPZ transport is even more generic, arising in both supersymmetric and periodically driven models. Motivated by recent advances in the realization of SU(N)-symmetric spin models in alkaline-earth-based optical lattice experiments, we propose and analyze a protocol to directly investigate the KPZ scaling function in such systems.

2.
Phys Rev Lett ; 128(9): 093001, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35302810

RESUMO

The observation of Pauli blocking of atomic spontaneous decay via direct measurements of the atomic population requires the use of long-lived atomic gases where quantum statistics, atom recoil, and cooperative radiative processes are all relevant. We develop a theoretical framework capable of simultaneously accounting for all these effects in the many-body quantum degenerate regime. We apply it to atoms in a single 2D pancake or arrays of pancakes featuring an effective Λ level structure (one excited and two degenerate ground states). We identify a parameter window in which a factor of 2 extension in the atomic lifetime clearly attributable to Pauli blocking should be experimentally observable in deeply degenerate gases with ∼10^{3} atoms. We experimentally observe a suppressed excited-state decay rate, fully consistent with the theory prediction of an enhanced excited-state lifetime, on the ^{1}S_{0}-^{3}P_{1} transition in ^{87}Sr atoms.

3.
Phys Rev Lett ; 123(12): 123401, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31633951

RESUMO

We investigate the effects of stimulated scattering of optical lattice photons on atomic coherence times in a state-of-the art ^{87}Sr optical lattice clock. Such scattering processes are found to limit the achievable coherence times to less than 12 s (corresponding to a quality factor of 1×10^{16}), significantly shorter than the predicted 145(40) s lifetime of ^{87}Sr's excited clock state. We suggest that shallow, state-independent optical lattices with increased lattice constants can give rise to sufficiently small lattice photon scattering and motional dephasing rates as to enable coherence times on the order of the clock transition's natural lifetime. Not only should this scheme be compatible with the relatively high atomic density associated with Fermi-degenerate gases in three-dimensional optical lattices, but we anticipate that certain properties of various quantum states of matter-such as the localization of atoms in a Mott insulator-can be used to suppress dephasing due to tunneling.

4.
Phys Rev Lett ; 120(10): 103201, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29570334

RESUMO

We implement imaging spectroscopy of the optical clock transition of lattice-trapped degenerate fermionic Sr in the Mott-insulating regime, combining micron spatial resolution with submillihertz spectral precision. We use these tools to demonstrate atomic coherence for up to 15 s on the clock transition and reach a record frequency precision of 2.5×10^{-19}. We perform the most rapid evaluation of trapping light shifts and record a 150 mHz linewidth, the narrowest Rabi line shape observed on a coherent optical transition. The important emerging capability of combining high-resolution imaging and spectroscopy will improve the clock precision, and provide a path towards measuring many-body interactions and testing fundamental physics.

5.
Science ; 383(6681): 384-387, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38271496

RESUMO

Collective couplings of atomic dipoles to a shared electromagnetic environment produce a wide range of many-body phenomena. We report on the direct observation of resonant electric dipole-dipole interactions in a cubic array of atoms in the many-excitation limit. The interactions produce spatially dependent cooperative Lamb shifts when spectroscopically interrogating the millihertz-wide optical clock transition in strontium-87. We show that the ensemble-averaged shifts can be suppressed below the level of evaluated systematic uncertainties for optical atomic clocks. Additionally, we demonstrate that excitation of the atomic dipoles near a Bragg angle can enhance these effects by nearly an order of magnitude compared with nonresonant geometries. Our work demonstrates a platform for precise studies of the quantum many-body physics of spins with long-range interactions mediated by propagating photons.

6.
Science ; 374(6570): 979-983, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34793223

RESUMO

Transition rates between coupled states in a quantum system depend on the density of available final states. The radiative decay of an excited atomic state has been suppressed by reducing the density of electromagnetic vacuum modes near the atomic transition. Likewise, reducing the density of available momentum modes of the atomic motion when it is embedded inside a Fermi sea will suppress spontaneous emission and photon scattering rates. Here we report the experimental demonstration of suppressed light scattering in a quantum degenerate Fermi gas. We systematically measured the dependence of the suppression factor on the temperature and Fermi energy of a strontium quantum gas and achieved suppression of scattering rates by up to a factor of 2 compared with a thermal gas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA