Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 18(4): e2103552, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34841670

RESUMO

Significant advances in physicochemical properties of polymeric micelles enable optimization of therapeutic drug efficacy, supporting nanomedicine manufacturing and clinical translation. Yet, the effect of micelle morphology on pharmacological efficacy is not adequately addressed. This work addresses this gap by assessing pharmacological efficacy of polymeric micelles with spherical and worm-like morphologies. It is observed that poly(2-oxazoline)-based polymeric micelles can be elongated over time from a spherical structure to worm-like structure, with elongation influenced by several conditions, including the amount and type of drug loaded into the micelles. The role of different morphologies on pharmacological performance of drug loaded micelles against triple-negative breast cancer and pancreatic cancer tumor models is further evaluated. Spherical micelles accumulate rapidly in the tumor tissue while retaining large amounts of drug; worm-like micelles accumulate more slowly and only upon releasing significant amounts of drug. These findings suggest that the dynamic character of the drug-micelle structure and the micelle morphology play a critical role in pharmacological performance, and that spherical micelles are better suited for systemic delivery of anticancer drugs to tumors when drugs are loosely associated with the polymeric micelles.


Assuntos
Antineoplásicos , Micelas , Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Nanomedicina , Polímeros/química
2.
Nanomedicine ; 32: 102345, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33259959

RESUMO

We report a nanoparticle formulation of the SHH-pathway inhibitor vismodegib that improves efficacy for medulloblastoma, while reducing toxicity. Limited blood-brain barrier (BBB) penetration and dose-limiting extitle/citraneural toxicities complicate systemic therapies for brain tumors. Vismodegib is FDA-approved for SHH-driven basal cell carcinoma, but implementation for medulloblastoma has been limited by inadequate efficacy and excessive bone toxicity. To address these issues through optimized drug delivery, we formulated vismodegib in polyoxazoline block copolymer micelles (POx-vismo). We then evaluated POx-vismo in transgenic mice that develop SHH-driven medulloblastomas with native vasculature and tumor microenvironment. POx-vismo improved CNS pharmacokinetics and reduced bone toxicity. Mechanistically, the nanoparticle carrier did not enter the CNS, and acted within the vascular compartment to improve drug delivery. Unlike conventional vismodegib, POx-vismo extended survival in medulloblastoma-bearing mice. Our results show the broad potential for non-targeted nanoparticle formulation to improve systemic brain tumor therapy, and specifically to improve vismodegib therapy for SHH-driven cancers.


Assuntos
Anilidas/farmacocinética , Anilidas/uso terapêutico , Sistema Nervoso Central/patologia , Neoplasias Cerebelares/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Meduloblastoma/tratamento farmacológico , Nanopartículas/química , Oxazóis/química , Piridinas/farmacocinética , Piridinas/uso terapêutico , Anilidas/efeitos adversos , Anilidas/farmacologia , Animais , Disponibilidade Biológica , Modelos Animais de Doenças , Portadores de Fármacos/química , Camundongos , Micelas , Tamanho da Partícula , Ligação Proteica , Piridinas/efeitos adversos , Piridinas/farmacologia , Albumina Sérica/metabolismo
3.
Development ; 143(21): 4038-4052, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27803059

RESUMO

Microcephaly and medulloblastoma may both result from mutations that compromise genomic stability. We report that ATR, which is mutated in the microcephalic disorder Seckel syndrome, sustains cerebellar growth by maintaining chromosomal integrity during postnatal neurogenesis. Atr deletion in cerebellar granule neuron progenitors (CGNPs) induced proliferation-associated DNA damage, p53 activation, apoptosis and cerebellar hypoplasia in mice. Co-deletions of either p53 or Bax and Bak prevented apoptosis in Atr-deleted CGNPs, but failed to fully rescue cerebellar growth. ATR-deficient CGNPs had impaired cell cycle checkpoint function and continued to proliferate, accumulating chromosomal abnormalities. RNA-Seq demonstrated that the transcriptional response to ATR-deficient proliferation was highly p53 dependent and markedly attenuated by p53 co-deletion. Acute ATR inhibition in vivo by nanoparticle-formulated VE-822 reproduced the developmental disruptions seen with Atr deletion. Genetic deletion of Atr blocked tumorigenesis in medulloblastoma-prone SmoM2 mice. Our data show that p53-driven apoptosis and cell cycle arrest - and, in the absence of p53, non-apoptotic cell death - redundantly limit growth in ATR-deficient progenitors. These mechanisms may be exploited for treatment of CGNP-derived medulloblastoma using ATR inhibition.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias Cerebelares/genética , Cerebelo/crescimento & desenvolvimento , Instabilidade Cromossômica/genética , Meduloblastoma/genética , Neurogênese/genética , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Transformação Celular Neoplásica/efeitos dos fármacos , Neoplasias Cerebelares/patologia , Cerebelo/anormalidades , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Cerebelo/patologia , Instabilidade Cromossômica/efeitos dos fármacos , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Isoxazóis/farmacologia , Masculino , Meduloblastoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Pirazinas/farmacologia
4.
Int J Mol Sci ; 20(15)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370144

RESUMO

Normally ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed in the central nervous and reproductive systems of adults, but its de novo expression has been detected in many human cancers. There is a growing body of evidence that UCH-L1 de-ubiquitinating (DUB) activity plays a major pro-metastatic role in certain carcinomas. Here we tested anti-metastatic effects of the small-molecule inhibitor of UCH-L1 DUB activity, LDN-57444, in cell lines from advanced oral squamous cell carcinoma (OSCC) as well as invasive nasopharyngeal (NP) cell lines expressing the major pro-metastatic gene product of Epstein-Barr virus (EBV) tumor virus, LMP1. To overcome the limited aqueous solubility of LDN-57444 we developed a nanoparticle formulation of LDN-57444 by incorporation of the compound in polyoxazoline micellear nanoparticles (LDN-POx). LDN-POx nanoparticles were equal in effects as the native compound in vitro. Our results demonstrate that inhibition of UCH-L1 DUB activity with LDN or LDN-POx inhibits secretion of exosomes and reduces levels of the pro-metastatic factor in exosomal fractions. Both forms of UCH-L1 DUB inhibitor suppress motility of metastatic squamous carcinoma cells as well as nasopharyngeal cells expressing EBV pro-metastatic Latent membrane protein 1 (LMP1) in physiological assays. Moreover, treatment with LDN and LDN-POx resulted in reduced levels of pro-metastatic markers, a decrease of carcinoma cell adhesion, as well as inhibition of extra-cellular vesicle (ECV)-mediated transfer of viral invasive factor LMP1. We suggest that soluble inhibitors of UCH-L1 such as LDN-POx offer potential forms of treatment for invasive carcinomas including EBV-positive malignancies.


Assuntos
Antineoplásicos/farmacologia , Portadores de Fármacos , Células Epiteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Indóis/farmacologia , Oximas/farmacologia , Ubiquitina Tiolesterase/genética , Proteínas da Matriz Viral/genética , Antineoplásicos/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidade , Humanos , Indóis/química , Micelas , Boca/metabolismo , Boca/patologia , Nanopartículas/química , Nanopartículas/ultraestrutura , Nasofaringe/metabolismo , Nasofaringe/patologia , Oxazóis/química , Oximas/química , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Proteínas da Matriz Viral/metabolismo
5.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559220

RESUMO

Infiltration of immunosuppressive cells into the breast tumor microenvironment (TME) is associated with suppressed effector T cell (Teff) responses, accelerated tumor growth, and poor clinical outcomes. Previous studies from our group and others identified infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) as critical contributors to immune dysfunction in the orthotopic triple-negative breast cancer (TNBC) tumor model limiting the efficacy of adoptive cellular therapy. However, approaches to target these cells specifically in the TME are currently lacking. To overcome this barrier, polymeric micelles nanoparticles (PMNPs) were used for co-delivery of small molecule drugs activating Toll-like receptors 7 and 8 (TLR7/8) and inhibiting PI3K delta. The immunomodulation of the TME by TLR7/8 agonist and PI3K inhibitor altered macrophage polarization, reduced MDSC accumulation and selectively decreased tissue-resident Tregs in the TME, while enhancing the T and B cell adaptive immune response. PMNPs significantly enhanced the anti-tumor activity of local radiation therapy (RT) in mice bearing orthotopic TNBC tumors compared to RT alone. Taken together, these data demonstrate that RT combined with a nanoformulated immunostimulant restructured the TME and has promising potential for future translation combined with RT for patients with TNBC.

6.
Macromol Biosci ; 23(11): e2300177, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37466165

RESUMO

The present study expands the versatility of cationic poly(2-oxazoline) (POx) copolymers as a polyethylene glycol (PEG)-free platform for gene delivery to immune cells, such as monocytes and macrophages. Several block copolymers are developed by varying nonionic hydrophilic blocks (poly(2-methyl-2-oxazoline) (pMeOx) or poly(2-ethyl-2-oxazoline) (pEtOx), cationic blocks, and an optional hydrophobic block (poly(2-isopropyl-2-oxazoline) (iPrOx). The cationic blocks are produced by side chain modification of 2-methoxy-carboxyethyl-2-oxazoline (MestOx) block precursor with diethylenetriamine (DET) or tris(2-aminoethyl)amine (TREN). For the attachment of a targeting ligand, mannose, azide-alkyne cycloaddition click chemistry methods are employed. Of the two cationic side chains, polyplexes made with DET-containing copolymers transfect macrophages significantly better than those made with TREN-based copolymer. Likewise, nontargeted pEtOx-based diblock copolymer is more active in cell transfection than pMeOx-based copolymer. The triblock copolymer with hydrophobic block iPrOx performs poorly compared to the diblock copolymer which lacks this additional block. Surprisingly, attachment of a mannose ligand to either copolymer is inhibitory for transfection. Despite similarities in size and design, mannosylated polyplexes result in lower cell internalization compared to nonmannosylated polyplexes. Thus, PEG-free, nontargeted DET-, and pEtOx-based diblock copolymer outperforms other studied structures in the transfection of macrophages and displays transfection levels comparable to GeneJuice, a commercial nonlipid transfection reagent.


Assuntos
Manose , Polietilenoglicóis , Polietilenoglicóis/química , Ligantes , Plasmídeos/genética , Polímeros/química , DNA/química , Transfecção
7.
Nano Today ; 512023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37484164

RESUMO

The presence of immunosuppressive immune cells in tumors is a significant barrier to the generation of therapeutic immune responses. Similarly, in vivo triple-negative breast cancer (TNBC) models often contain prevalent, immunosuppressive tumor-associated macrophages in the tumor microenvironment (TME), resulting in breast cancer initiation, invasion, and metastasis. Here, we test systemic chemoimmunotherapy using small-molecule agents, paclitaxel (PTX), and colony-stimulating factor 1 receptor (CSF1R) inhibitor, PLX3397, to enhance the adaptive T cell immunity against TNBCs in immunocompetent mouse TNBC models. We use high-capacity poly(2-oxazoline) (POx)-based polymeric micelles to greatly improve the solubility of insoluble PTX and PLX3397 and widen the therapeutic index of such drugs. The results demonstrate that high-dose PTX in POx, even as a single agent, exerts strong effects on TME and induces long-term immune memory. In addition, we demonstrate that the PTX and PLX3397 combination provides consistent therapeutic improvement across several TNBC models, resulting from the repolarization of the immunosuppressive TME and enhanced T cell immune response that suppress both the primary tumor growth and metastasis. Overall, the work emphasizes the benefit of drug reformulation and outlines potential translational path for both PTX and PTX with PLX3397 combination therapy using POx polymeric micelles for the treatment of TNBC.

8.
bioRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398150

RESUMO

Triple-negative breast cancer (TNBC) is notoriously difficult to treat due to the lack of targetable receptors and sometimes poor response to chemotherapy. The transforming growth factor-beta (TGFß) family of proteins and their receptors (TGFR) are highly expressed in TNBC and implicated in chemotherapy-induced cancer stemness. Here we evaluated combination treatments using experimental TGFR inhibitors (TGFßi), SB525334 (SB), and LY2109761 (LY) with Paclitaxel (PTX) chemotherapy. These TGFßi target TGFR-I (SB) or both TGFR-I&II (LY). Due to the poor water solubility of these drugs, we incorporated each of them in poly(2-oxazoline) (POx) high-capacity polymeric micelles (SB-POx and LY-POx). We assessed their anti-cancer effect as single agents and in combination with micellar Paclitaxel (PTX-POx) using multiple immunocompetent TNBC mouse models that mimic human subtypes (4T1, T11-Apobec and T11-UV). While either TGFßi or PTX showed a differential effect in each model as single agents, the combinations were consistently effective against all three models. Genetic profiling of the tumors revealed differences in the expression levels of genes associated with TGFß, EMT, TLR-4, and Bcl2 signaling, alluding to the susceptibility to specific gene signatures to the treatment. Taken together, our study suggests that TGFßi and PTX combination therapy using high-capacity POx micelle delivery provides a robust anti-tumor response in multiple TNBC subtype mouse models.

9.
Res Sq ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333134

RESUMO

Recurrence is the primary life-threatening complication for medulloblastoma (MB). In Sonic Hedgehog (SHH)-subgroup MB, OLIG2-expressing tumor stem cells drive recurrence. We investigated the anti-tumor potential of the small-molecule OLIG2 inhibitor CT-179, using SHH-MB patient-derived organoids, patient-derived xenograft (PDX) tumors and mice genetically-engineered to develop SHH-MB. CT-179 disrupted OLIG2 dimerization, DNA binding and phosphorylation and altered tumor cell cycle kinetics in vitro and in vivo, increasing differentiation and apoptosis. CT-179 increased survival time in GEMM and PDX models of SHH-MB, and potentiated radiotherapy in both organoid and mouse models, delaying post-radiation recurrence. Single cell transcriptomic studies (scRNA-seq) confirmed that CT-179 increased differentiation and showed that tumors up-regulated Cdk4 post-treatment. Consistent with increased CDK4 mediating CT-179 resistance, CT-179 combined with CDK4/6 inhibitor palbociclib delayed recurrence compared to either single-agent. These data show that targeting treatment-resistant MB stem cell populations by adding the OLIG2 inhibitor CT-179 to initial MB treatment can reduce recurrence.

10.
Macromol Biosci ; 22(8): e2200056, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35526106

RESUMO

The rise of the novel virus SARS-CoV2 which causes the disease known as COVID-19 has led to a global pandemic claiming millions of lives. With no clinically approved treatment for COVID-19, physicians initially struggled to treat the disease, and a need remains for improved antiviral therapies in this area. It is conceived early in the pandemic that an inhalable formulation of the drug remdesivir which directly targets the virus at the site of infection could improve therapeutic outcomes in COVID-19. A set of requirements are developed that would be conducive to rapid drug approval: 1) try to use GRAS reagents 2) minimize excipient concentration and 3) achieve a working concentration of 5 mg/mL remdesivir to obtain a deliverable dose which is 5-10% of the IV dose. In this work, it is discovered that Poly(2-oxazoline) block copolymers can stabilize drug nanocrystal suspensions and provide suitable formulation characteristics for aerosol delivery while maintaining antiviral efficacy. The authors believe POx block copolymers can be used as a semi-ubiquitous stabilizer for the rapid development of nanocrystal formulations for new and existing diseases.


Assuntos
Tratamento Farmacológico da COVID-19 , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Alanina/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Excipientes , Humanos , Oxazóis , RNA Viral , Aerossóis e Gotículas Respiratórios , SARS-CoV-2
11.
Sci Adv ; 8(4): eabl5838, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35080986

RESUMO

The therapeutic potential of CDK4/6 inhibitors for brain tumors has been limited by recurrence. To address recurrence, we tested a nanoparticle formulation of CDK4/6 inhibitor palbociclib (POx-Palbo) in mice genetically-engineered to develop SHH-driven medulloblastoma, alone or in combination with specific agents suggested by our analysis. Nanoparticle encapsulation reduced palbociclib toxicity, enabled parenteral administration, improved CNS pharmacokinetics, and extended mouse survival, but recurrence persisted. scRNA-seq identified up-regulation of glutamate transporter Slc1a2 and down-regulation of diverse ribosomal genes in proliferating medulloblastoma cells in POx-Palbo-treated mice, suggesting mTORC1 signaling suppression, subsequently confirmed by decreased 4EBP1 phosphorylation. Combining POx-Palbo with the mTORC1 inhibitor sapanisertib produced mutually enhancing effects and prolonged mouse survival compared to either agent alone, contrasting markedly with other tested drug combinations. Our data show the potential of nanoparticle formulation and scRNA-seq analysis of resistance to improve brain tumor treatment and identify POx-Palbo + Sapanisertib as effective combinatorial therapy for SHH medulloblastoma.

12.
Cell Death Differ ; 28(5): 1579-1592, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33293647

RESUMO

The tendency of brain cells to undergo apoptosis in response to exogenous events varies across neural development, with apoptotic threshold dependent on proliferation state. Proliferative neural progenitors show a low threshold for apoptosis, while terminally differentiated neurons are relatively refractory. To define the mechanisms linking proliferation and apoptotic threshold, we examined the effect of conditionally deleting Bcl2l1, the gene that codes the antiapoptotic protein BCL-xL, in cerebellar granule neuron progenitors (CGNPs), and of co-deleting Bcl2l1 homologs, antiapoptotic Mcl-1, or pro-apoptotic Bax. We found that cerebella in conditional Bcl2l1-deleted (Bcl-xLcKO) mice were severely hypoplastic due to the increased apoptosis of CGNPs and their differentiated progeny, the cerebellar granule neurons (CGNs). Apoptosis was highest as Bcl-xLcKO CGNPs exited the cell cycle to initiate differentiation, with proliferating Bcl-xLcKO CGNPs relatively less affected. Despite the overall reduction in cerebellar growth, SHH-dependent proliferation was prolonged in Bcl-xLcKO mice, as more CGNPs remained proliferative in the second postnatal week. Co-deletion of Bax rescued the Bcl-xLcKO phenotype, while co-deletion of Mcl-1 enhanced the phenotype. These findings show that CGNPs require BCL-xL to regulate BAX-dependent apoptosis, and that this role can be partially compensated by MCL-1. Our data further show that BCL-xL expression regulates MCL-1 abundance in CGNPs, and suggest that excessive MCL-1 in Bcl-xLcKO mice prolongs CGNP proliferation by binding SUFU, resulting in increased SHH pathway activation. Accordingly, we propose that BCL-xL and MCL-1 interact with each other and with developmental mechanisms that regulate proliferation, to adjust the apoptotic threshold as CGNPs progress through postnatal neurogenesis to CGNs.


Assuntos
Neoplasias Cerebelares/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Proliferação de Células , Neoplasias Cerebelares/patologia , Humanos , Camundongos , Neurogênese , Transdução de Sinais
13.
Bio Protoc ; 11(6): e3953, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33855115

RESUMO

Tumor xenograft models developed by transplanting human tissues or cells into immune-deficient mice are widely used to study human cancer response to drug candidates. However, immune-deficient mice are unfit for investigating the effect of immunotherapeutic agents on the host immune response to cancer (Morgan, 2012). Here, we describe the preparation of an orthotopic, syngeneic model of lung adenocarcinoma (LUAD), a subtype of non-small cell lung cancer (NSCLC), to study the antitumor effect of chemo and immunotherapeutic agents in an immune-competent animal. The tumor model is developed by implanting 344SQ LUAD cells derived from the metastases of KrasG12D; p53R172HΔG genetically engineered mouse model into the left lung of a syngeneic host (Sv/129). The 344SQ LUAD model offers several advantages over other models: 1) The immune-competent host allows for the assessment of the biologic effects of immune-modulating agents; 2) The pathophysiological features of the human disease are preserved due to the orthotopic approach; 3) Predisposition of the tumor to metastasize facilitates the study of therapeutic effects on primary tumor as well as the metastases ( Chen et al., 2014 ). Furthermore, we also describe a treatment strategy based on Poly(2-oxazoline) micelles that has been shown to be effective in this difficult-to-treat tumor model ( Vinod et al., 2020b ).

14.
Bio Protoc ; 11(6): e3959, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33855119

RESUMO

Many new drug development candidates are highly lipophilic compounds with low water solubility. This constitutes a formidable challenge for the use of such compounds for cancer therapy, where high doses and intravenous injections are needed ( Di et al., 2012 ). Here, we present a poly(2-oxazoline) polymer (POx)-based nanoformulation strategy to solubilize and deliver hydrophobic drugs. POx micelles are prepared by a simple thin-film hydration method. In this method, the drug and polymer are dissolved in a common solvent and allowed to mix, following which the solvent is evaporated using mild heating conditions to form a thin film. The micelles form spontaneously upon hydration with saline. POx nanoformulation of hydrophobic drugs is unique in that it has a high drug loading capacity, which is superior to micelles of conventional surfactants. Moreover, multiple active pharmaceutical ingredients (APIs) can be included within the same POx micelle, thereby enabling the codelivery of binary as well as ternary drug combinations ( Han et al., 2012 ; He et al., 2016 ).

15.
Biomaterials ; 278: 121140, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34634661

RESUMO

The in vivo fate of nanoformulated drugs is governed by the physicochemical properties of the drug and the functionality of nanocarriers. Nanoformulations such as polymeric micelles, which physically encapsulate poorly soluble drugs, release their payload into the bloodstream during systemic circulation. This results in three distinct fractions of the drug-nanomedicine: encapsulated, protein-bound, and free drug. Having a thorough understanding of the pharmacokinetic (PK) profiles of each fraction is essential to elucidate mechanisms of nanomedicine-driven changes in drug exposure and PK/PD relationships pharmacodynamic activity. Here, we present a comprehensive preclinical assessment of the poly (2-oxazoline)-based polymeric micelle of paclitaxel (PTX) (POXOL hl-PM), including bioequivalence comparison to the clinically approved paclitaxel nanomedicine, Abraxane®. Physicochemical characterization and toxicity analysis of POXOL hl-PM was conducted using standardized protocols by the Nanotechnology Characterization Laboratory (NCL). The bioequivalence of POXOL hl-PM to Abraxane® was evaluated in rats and rhesus macaques using the NCL's established stable isotope tracer ultrafiltration assay (SITUA) to delineate the plasma PK of each PTX fraction. The SITUA study revealed that POXOL hl-PM and Abraxane® had comparable PK profiles not only for total PTX but also for the distinct drug fractions, suggesting bioequivalence in given animal models. The comprehensive preclinical evaluation of POXOL hl-PM in this study showcases a series of widely applicable standardized studies by NCL for assessing nanoformulations prior to clinical investigation.


Assuntos
Antineoplásicos Fitogênicos , Paclitaxel , Paclitaxel Ligado a Albumina , Animais , Linhagem Celular Tumoral , Portadores de Fármacos , Isótopos , Macaca mulatta , Micelas , Ratos , Roedores , Equivalência Terapêutica
16.
Adv Drug Deliv Rev ; 156: 80-118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32980449

RESUMO

Over the last three decades, polymeric micelles have emerged as a highly promising drug delivery platform for therapeutic compounds. Particularly, poorly soluble small molecules with high potency and significant toxicity were encapsulated in polymeric micelles. Polymeric micelles have shown improved pharmacokinetic profiles in preclinical animal models and enhanced efficacy with a superior safety profile for therapeutic drugs. Several polymeric micelle formulations have reached the clinical stage and are either in clinical trials or are approved for human use. This furthers interest in this field and underscores the need for additional learning of how to best design and apply these micellar carriers to improve the clinical outcomes of many drugs. In this review, we provide detailed information on polymeric micelles for the solubilization of poorly soluble small molecules in topics such as the design of block copolymers, experimental and theoretical analysis of drug encapsulation in polymeric micelles, pharmacokinetics of drugs in polymeric micelles, regulatory approval pathways of nanomedicines, and current outcomes from micelle formulations in clinical trials. We aim to describe the latest information on advanced analytical approaches for elucidating molecular interactions within the core of polymeric micelles for effective solubilization as well as for analyzing nanomedicine's pharmacokinetic profiles. Taking into account the considerations described within, academic and industrial researchers can continue to elucidate novel interactions in polymeric micelles and capitalize on their potential as drug delivery vehicles to help improve therapeutic outcomes in systemic delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Micelas , Polímeros/administração & dosagem , Animais , Composição de Medicamentos , Interações Medicamentosas , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/química , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Polímeros/química , Polímeros/farmacocinética , Solubilidade
17.
Sci Adv ; 6(25): eaba5542, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32596460

RESUMO

About 40% of patients with non-small cell lung cancer (NSCLC) have stage IV cancer at the time of diagnosis. The only viable treatment options for metastatic disease are systemic chemotherapy and immunotherapy. Nonetheless, chemoresistance remains a major cause of chemotherapy failure. New immunotherapeutic modalities such as anti-PD-1 immune checkpoint blockade have shown promise; however, response to such strategies is highly variable across patients. Here, we show that our unique poly(2-oxazoline)-based nanomicellar formulation (PM) of Resiquimod, an imidazoquinoline Toll-like receptor (TLR) 7/8 agonist, had a superior tumor inhibitory effect in a metastatic model of lung adenocarcinoma, relative to anti-PD-1 therapy or platinum-based chemotherapy. Investigation of the in vivo immune status following Resiquimod PM treatment showed that Resiquimod-based stimulation of antigen-presenting cells in the tumor microenvironment resulted in the mobilization of an antitumor CD8+ immune response. Our study demonstrates the promise of poly(2-oxazoline)-formulated Resiquimod for treating metastatic NSCLC.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Adjuvantes Imunológicos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Oxazóis , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Microambiente Tumoral
18.
J Control Release ; 307: 261-271, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31260756

RESUMO

Here we report a novel poly(2-oxazoline)-based block copolymer with the aromatic heterocyclic side chains in one block, poly(2-methyl-2-oxazoline)-b-poly(2-N,N-dimethyl-1,3,5-triazine-2,4-diamine-6-ethyl-2-oxazoline) (PMeOx-PcBOx), and demonstrate its potential application as a drug delivery platform. The copolymer was synthesized via the condensation of N,N-dimethylbiguanide with the methyl ester side chain in poly(2-methoxycarboxyethyl-2-oxazoline) block (PMestOx) of the PMeOx-PMestOx diblock copolymer. We confirmed the N,N-dimethylbiguanide condensation with PMestOx and the complete conversion of the side chain to the N,N-dimethyl-1,3,5-triazine-2,4-diamine-6-ethyl moiety by NMR spectroscopy, MALDI-TOF mass spectroscopy, UV-Vis spectroscopy, and titration analysis. The PMeOx-PcBOx copolymer self-assemble into polymeric micelles in aqueous solution. Successful encapsulation into these micelles has been demonstrated for 1) several poorly soluble drugs, such as bruceantin and LY2109761, and 2) dichloro(1,2-diaminocyclohexane)platinum(II) (DachPt). The first class of drugs is incorporated possibly via hydrogen bonding and pi-pi interactions with the PcBOx side groups, while the second one is likely forms coordination bonds with the same side groups. The capability of this new copolymer to solubilize a uniquely diverse set of active pharmaceutical ingredients suggests potential applications in drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Oxazóis/administração & dosagem , Polímeros/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Humanos , Camundongos , Micelas , Oxazóis/química , Polímeros/química
19.
Sci Adv ; 5(6): eaav9784, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31249867

RESUMO

Many drug candidates fail therapeutic development because of poor aqueous solubility. We have conceived a computer-aided strategy to enable polymeric micelle-based delivery of poorly soluble drugs. We built models predicting both drug loading efficiency (LE) and loading capacity (LC) using novel descriptors of drug-polymer complexes. These models were employed for virtual screening of drug libraries, and eight drugs predicted to have either high LE and high LC or low LE and low LC were selected. Three putative positives, as well as three putative negative hits, were confirmed experimentally (implying 75% prediction accuracy). Fortuitously, simvastatin, a putative negative hit, was found to have the desired micelle solubility. Podophyllotoxin and simvastatin (LE of 95% and 87% and LC of 43% and 41%, respectively) were among the top five polymeric micelle-soluble compounds ever studied experimentally. The success of the strategy described herein suggests its broad utility for designing drug delivery systems.


Assuntos
Quimioinformática/métodos , Química Farmacêutica/métodos , Podofilotoxina/química , Polímeros/química , Sinvastatina/química , Sistemas de Liberação de Medicamentos/métodos , Micelas , Tamanho da Partícula , Solubilidade/efeitos dos fármacos , Água/química
20.
Nat Commun ; 10(1): 5829, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863004

RESUMO

Targeting oncogenic pathways holds promise for brain tumor treatment, but inhibition of Sonic Hedgehog (SHH) signaling has failed in SHH-driven medulloblastoma. Cellular diversity within tumors and reduced lineage commitment can undermine targeted therapy by increasing the probability of treatment-resistant populations. Using single-cell RNA-seq and lineage tracing, we analyzed cellular diversity in medulloblastomas in transgenic, medulloblastoma-prone mice, and responses to the SHH-pathway inhibitor vismodegib. In untreated tumors, we find expected stromal cells and tumor-derived cells showing either a spectrum of neural progenitor-differentiation states or glial and stem cell markers. Vismodegib reduces the proliferative population and increases differentiation. However, specific cell types in vismodegib-treated tumors remain proliferative, showing either persistent SHH-pathway activation or stem cell characteristics. Our data show that even in tumors with a single pathway-activating mutation, diverse mechanisms drive tumor growth. This diversity confers early resistance to targeted inhibitor therapy, demonstrating the need to target multiple pathways simultaneously.


Assuntos
Neoplasias Cerebelares/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Hedgehog/antagonistas & inibidores , Meduloblastoma/genética , Transdução de Sinais/genética , Anilidas/farmacologia , Anilidas/uso terapêutico , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/patologia , Cerebelo/citologia , Cerebelo/patologia , Feminino , Mutação com Ganho de Função , Proteínas Hedgehog/genética , Humanos , Masculino , Meduloblastoma/tratamento farmacológico , Meduloblastoma/patologia , Camundongos , Camundongos Transgênicos , Terapia de Alvo Molecular/métodos , Proteína MyoD/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Piridinas/farmacologia , Piridinas/uso terapêutico , RNA-Seq , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única , Receptor Smoothened/genética , Fatores de Transcrição HES-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA