Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(49): 55107-55115, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33253519

RESUMO

Organic semiconductor (OSC)-based gas detection has attracted considerable attention due to the facile manufacturing process and effective contact with target chemicals at room temperature. However, OSCs intrinsically suffer from inferior sensing and recovery capability due to lack of functional sites and deep gas penetration into the film. Here, we describe an interpenetrating polymer semiconductor nanonetwork (IPSN) channel possessing unreacted silanol (Si-OH) groups on its surface to overcome bottlenecks that come from OSC-based chemodetection. On the top of the IPSN, moreover, we introduced electron-donating amine (NH2) groups as a chemical receptor because they strongly interact with the electron-withdrawing nature of NO2 gas. The NH2-IPSN-based field-effect transistor exhibited high-performance chemodetection such as ultrasensitivity (990% ppm-1 at 5 ppm) and excellent NO2 selectivity against other toxic gases. Impressively, the gas recovery was significantly improved because the NH2 chemical receptors anchored on the surface of the IPSN suppress deep gas penetration into the film. This work demonstrates that our NO2 chemodetection is expected to provide inspiration and guideline for realization of practical gas sensors in various industries and daily life.

2.
Adv Mater ; 31(28): e1901400, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31063271

RESUMO

A universal method that enables utilization of conventional photolithography for processing a variety of polymer semiconductors is developed. The method relies on imparting chemical and physical orthogonality to a polymer film via formation of a semi-interpenetrating diphasic polymer network with a bridged polysilsesquioxane structure, which is termed an orthogonal polymer semiconductor gel. The synthesized gel films remain tolerant to various chemical and physical etching processes involved in photolithography, thereby facilitating fabrication of high-resolution patterns of polymer semiconductors. This method is utilized for fabricating tandem electronics, including pn-complementary inverter logic devices and pixelated polymer light-emitting diodes, which require deposition of multiple polymer semiconductors through solution processes. This novel and universal method is expected to significantly influence the development of advanced polymer electronics requiring sub-micrometer tandem structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA