Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 15(6): 3703-8, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25933199

RESUMO

van der Waals layered materials have large crystal anisotropy and crystallize spontaneously into two-dimensional (2D) morphologies. Two-dimensional materials with hexagonal lattices are emerging 2D confined electronic systems at the limit of one or three atom thickness. Often these 2D lattices also form orthorhombic symmetries, but these materials have not been extensively investigated, mainly due to thermodynamic instability during crystal growth. Here, we show controlled polymorphic growth of 2D tin-sulfide crystals of either hexagonal SnS2 or orthorhombic SnS. Addition of H2 during the growth reaction enables selective determination of either n-type SnS2 or p-type SnS 2D crystal of dissimilar energy band gap of 2.77 eV (SnS2) or 1.26 eV (SnS) as a final product. Based on this synthetic 2D polymorphism of p-n crystals, we also demonstrate p-n heterojunctions for rectifiers and photovoltaic cells, and complementary inverters.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39352814

RESUMO

The widespread adoption of halide perovskites for application in thermoelectric devices, DC power generators, and lasers is hindered by their low charge carrier concentration. In particular, increasing their charge carrier concentration is considered the main challenge to serve as a promising room-temperature thermoelectric material. Efforts have been devoted to enhancing the charge carrier concentration by doping and composition engineering. However, the coupling between charge carrier concentration and mobility, along with the poor stability of these materials, impedes their development for thermoelectric applications. Herein, we demonstrate the successful increase in the charge carrier concentration of CsPbI2Br by forming a heterojunction structure with Cu2S via a facile spin-coating method. The excellent band alignment between two materials combined with a charge-transfer mechanism realizes the modulation doping, resulting in 8 orders of magnitude increase in carrier concentration from 1012 to 1020 cm-3 without detrimental effect on the carrier mobility of CsPbI2Br. The thermoelectric power factor of the heterostructured CsPbI2Br reached 6.6 µW/m·K2, which is 330 times higher than that of pristine CsPbI2Br. Furthermore, these films showed higher humidity stability than the control films. This study offers a promising avenue for increasing the charge carrier concentration of halide perovskites, thereby enhancing their potential for various applications.

3.
Materials (Basel) ; 16(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37297218

RESUMO

In this paper, a method for optimizing the mixing ratio of filler coke and binder for high-strength carbon-carbon composites is proposed. Particle size distribution, specific surface area, and true density were analyzed to characterize the filler properties. The optimum binder mixing ratio was experimentally determined based on the filler properties. As the filler particle size was decreased, a higher binder mixing ratio was required to enhance the mechanical strength of the composite. When the d50 particle size of the filler was 62.13 and 27.10 µm, the required binder mixing ratios were 25 and 30 vol.%, respectively. From this result, the interaction index, which quantifies the interaction between the coke and binder during carbonization, was deduced. The interaction index had a higher correlation coefficient with the compressive strength than that of the porosity. Therefore, the interaction index can be used in predicting the mechanical strength of carbon blocks and optimizing their binder mixing ratios. Furthermore, as it is calculated from the carbonization of blocks without additional analysis, the interaction index can be easily used in industrial applications.

4.
Chem Commun (Camb) ; 58(70): 9774-9777, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35968881

RESUMO

Thin single organic crystals (≤1 µm) with large area (≥100 × 100 µm2) are desirable to explore photoinduced processes using ultrafast spectroscopy and electron-diffraction. Here, we present a general method based on spatial confinement to grow such crystals using the prototypical proton transfer system, 1,5-dihydroxyanthraquinone, as an example, and provide the protocol for optically characterizing structural dynamics to enable proper assignments using diffraction methods.

5.
J Nanosci Nanotechnol ; 16(5): 4405-10, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27483764

RESUMO

Oxygen evolution reaction for alkaline water electrolysis was studied using various mixed metal oxide catalysts. Mixed metal oxide electrodes consisting of RuO2, IrO2, and Ta2O5 with various ratios on a titanium substrate were prepared by spray thermal decomposition. The crystallinity of the synthesized catalyst was investigated via X-ray diffraction, and the oxidation state of each component was determined using X-ray photoelectron spectroscopy (XPS). Surface morphology was investigated by scanning electron microscopy, and the roughness factor was determined by cyclic voltammetry (CV) in 1 M H2SO4. Electo-catalytic activity for oxygen evolution reaction was measured by cyclic voltammetry (CV) in 1 M KOH at room temperature, and it was found to be strongly dependent.on composition of catalyst. Among all electrodes tested, catalyst with a composition of Ru:Ir:Ta = 1:2:2.5 exhibited the highest current density of 100 mA cm(-2) at 1.67 V, corresponding to an overpotential of 0.44 V.

6.
J Nanosci Nanotechnol ; 15(10): 8257-62, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26726498

RESUMO

In the present study, hydrogen evolution reaction (HER) by alkaline water electrolysis was conducted without using a precious metal catalyst. We synthesized an amorphous cobalt-doped molybdenum sulfide by electrodeposition using different cobalt loadings. The amorphous Co-MoSx produced was characterized by scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The cobalt doping and sulfidation procedure resulted in the successful fabrication of a candidate catalyst for the catalytic hydrogen evolution in alkaline solution with high intrinsic activity. Cobalt incorporated amorphous MoSx exhibited 3 times higher HER activity than non-promoted MoSx.

7.
J Nanosci Nanotechnol ; 15(11): 8890-5, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26726613

RESUMO

δ-Phase and α-phase manganese oxides were prepared using a hydrothermal method and their electrochemical properties were characterized. The influence of calcination temperature on the properties of manganese oxides was studied. Crystallinities were studied by X-ray diffraction, and scanning and transmission electron microscopy were utilized to examine morphologies. Average pore sizes and specific surface areas of samples were analyzed using the Barret-Joyner-Halenda and Brunauer-Emmett-Teller methods, respectively. After calcination in the range 300 degrees C to 600 degrees C, changes in morphology and crystallinity were observed. The flower-like shape of as synthesized samples became nanorod-like and the δ-phase changed to the α-phase. These changes may have been due to the removal of water during calcination. Furthermore, a transition stage in which the two phases coexisted was observed. Synthesized manganese oxides were mixed with carbon by sonification, to increase electric conductivity and to induce a synergistic effect between pseudo-capacitor and electric double layer capacitor (EDLC). Specific capacitances and rate durability of each composite were investigated by cyclic voltammetry in 1 M Na2SO4 electrolyte at different scan rates. MnO2 calcined at 400 degrees C exhibited the highest capacitance, probably due to its high surface area and more porous structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA