Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(15): 6571-6575, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572833

RESUMO

Structure-porosity relationships for metal-organic polyhedra (MOPs) are hardly investigated because they tend to be amorphized after activation, which inhibits crystallographic characterization. Here, we show a mixed-ligand strategy to statistically distribute two distinct carbazole-type ligands within rhodium-based octahedral MOPs, leading to systematic tuning of the microporosity in the resulting amorphous solids.

2.
Inorg Chem ; 62(51): 20901-20905, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38085262

RESUMO

Not only is excellent performance in SO2 capture by porous materials (uptake above 17 mmol g-1) relevant, but also finding a correlation between the architecture changes into a family and their SO2 adsorption is very useful. In this contribution, we studied the SO2 adsorption behavior (at very low pressure) of an Al(III)-MOF family that shares the pore architecture of MIL-53. The results indicate an inversely proportional trend for the SO2 capture and pore expansion, since by increasing the length of the channel pore, the SO2 uptake gradually decreases. In addition, this trend is clearly observed in the heat of adsorption, which describes the interaction between the SO2 molecule and the µ-OH functional group. These finding are supported by experimental analysis and computational studies.

3.
Angew Chem Int Ed Engl ; 62(49): e202309025, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37614026

RESUMO

Metal-organic frameworks (MOFs) provide uniquely tunable, periodic platforms for site-isolation of reactive low-valent metal complexes of relevance in modern catalysis, adsorptive applications, and fundamental structural studies. Strategies for integrating such species in MOFs include post-synthetic metalation, encapsulation and direct synthesis using low-valent organometallic complexes as building blocks. These approaches have each proven effective in enhancing catalytic activity, modulating product distributions (i.e., by improving catalytic selectivity), and providing valuable mechanistic insights. In this minireview, we explore these different strategies, as applied to isolate low-valent species within MOFs, with a particular focus on examples that leverage the unique crystallinity, permanent porosity and chemical mutability of MOFs to achieve deep structural insights that lead to new paradigms in the field of hybrid catalysis.

4.
Inorg Chem ; 61(38): 15037-15044, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36083270

RESUMO

The environmentally benign metal-organic framework (MOF) CUK-1 based on 2,4-pyridine dicarboxylate has been prepared for the first time using Mn(II) as the inorganic node and water as the only solvent. Mn-CUK-1 shows reversible and efficient capture of H2O, SO2, and H2S. Compared to previously studied Co(II) and Mg(II) versions of the same MOF, Mn-CUK-1 also exhibited unique temperature-induced structural flexibility due to organic linker torsion, as detailed by variable-temperature single-crystal X-ray diffraction studies. Owing to this inherent solid-state flexibility, Mn-CUK-1 showed stepwise adsorption for polar gases, which induce structural deformations upon adsorption, while the nonpolar guest adsorbates were reversibly sorbed in a more classical manner. Notably, Mn-CUK-1 demonstrates the highest reported H2S capacity-to-surface area ratio among MOFs that are chemically stable toward this reactive acidic molecule. Moreover, Mn-CUK-1 displays exceptional structural stability in the presence of high relative humidity and corrosive gases and shows soft crystalline behavior triggered by changes in both the adsorption temperature and guest molecule identity.

5.
Angew Chem Int Ed Engl ; 61(48): e202210857, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36165854

RESUMO

Uncommon reversible guest-induced metal-hemilabile linker bond dynamics in MOF MFM-300(Sc) was unraveled to switch on/switch off catalytic open metal sites. The catalytic activity of this MOF with non-permanent open metal sites was demonstrated using a model Strecker hydrocyanation reaction as a proof-of-concept. Conclusively, the catalytic activity was evidenced to be fully reversible, preserving the conversion performance and structure integrity of MFM-300(Sc) over multiple cycles. These experimental findings were corroborated by quantum-calculations that revealed a reaction mechanism driven by the Sc-open metal sites. This discovery paves the way towards the design of new effective and easily regenerable heterogeneous MOF catalysts integrating switchable metal sites.

6.
Phys Chem Chem Phys ; 23(2): 1454-1463, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33399155

RESUMO

NOTT-401 was found to be a highly stable adsorbent for SO2 and CO with excellent cyclability and a straightforward regeneration at room temperature. Moreover, the preferential CO binding sites within the MOF material have been identified by experimental in situ DRIFT spectroscopy coupled with DFT and QTAIM calculations. Such preferential CO adsorption sites were correlated to identify the most significant SO2 interactions within NOTT-401. This study sheds light on the role of the thiophene and hydroxo functionality, for a MOF material, in the binding of SO2 or CO.

7.
Angew Chem Int Ed Engl ; 60(32): 17556-17563, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-33979473

RESUMO

We report the first experimental investigation of porous organic cages (POCs) for the demanding challenge of SO2 capture. Three structurally related N-containing cage molecular materials were studied. An imine-functionalized POC (CC3) showed modest and reversible SO2 capture, while a secondary-amine POC (RCC3) exhibited high but irreversible SO2 capture. A tertiary amine POC (6FT-RCC3) demonstrated very high SO2 capture (13.78 mmol g-1 ; 16.4 SO2 molecules per cage) combined with excellent reversibility for at least 50 adsorption-desorption cycles. The adsorption behavior was investigated by FTIR spectroscopy, 13 C CP-MAS NMR experiments, and computational calculations.

8.
J Am Chem Soc ; 142(39): 16795-16804, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32894014

RESUMO

The first bioinspired microporous metal-organic framework (MOF) synthesized using ellagic acid, a common natural antioxidant and polyphenol building unit, is presented. Bi2O(H2O)2(C14H2O8)·nH2O (SU-101) was inspired by bismuth phenolate metallodrugs, and could be synthesized entirely from nonhazardous or edible reagents under ambient aqueous conditions, enabling simple scale-up. Reagent-grade and affordable dietary supplement-grade ellagic acid was sourced from tree bark and pomegranate hulls, respectively. Biocompatibility and colloidal stability were confirmed by in vitro assays. The material exhibits remarkable chemical stability for a bioinspired MOF (pH = 2-14, hydrothermal conditions, heated organic solvents, biological media, SO2 and H2S), attributed to the strongly chelating phenolates. A total H2S uptake of 15.95 mmol g-1 was recorded, representing one of the highest H2S capacities for a MOF, where polysulfides are formed inside the pores of the material. Phenolic phytochemicals remain largely unexplored as linkers for MOF synthesis, opening new avenues to design stable, eco-friendly, scalable, and low-cost MOFs for diverse applications, including drug delivery.


Assuntos
Materiais Biocompatíveis/síntese química , Bismuto/química , Ácido Elágico/química , Estruturas Metalorgânicas/síntese química , Materiais Biocompatíveis/química , Teoria da Densidade Funcional , Estruturas Metalorgânicas/química , Estrutura Molecular
9.
Phys Chem Chem Phys ; 22(15): 7969-7974, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32236261

RESUMO

CO is extremely toxic to humans since it can combine with haemoglobin to form carboxy-haemoglobin that reduces the oxygen-carrying capacity of blood. Metal-organic frameworks (MOFs), in particular InOF-1, are currently receiving preferential attention for the separation and capture of CO. In this investigation we report a theoretical study based on periodic density-functional-theory (DFT) analysis and matching experimental results (in situ DRIFTS). The aim of this article is to describe the non-covalent interactions between the functional groups of InOF-1 and the CO molecule since they are crucial to understand the adsorption mechanism of these materials. Our results show that the CO molecule mainly interacts with the µ2-OH hydroxo groups of InOF-1 through O-HO hydrogen bonds, and Cπ interactions by the biphenyl rings of the MOF. These results provide useful information on the CO adsorption mechanisms in InOF-1.

10.
Molecules ; 24(14)2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31336585

RESUMO

A series of 12 polysubstituted pyrrolo[3,4-b]pyridin-5-ones were synthesized via a one-pot cascade process (Ugi-3CR/aza Diels-Alder/N-acylation/decarboxylation/dehydration) and studied in vitro using human epithelial cervical carcinoma SiHa, HeLa, and CaSki cell line cultures. Three compounds of the series exhibited significative cytotoxicity against the three cell lines, with HeLa being the most sensitive one. Then, based on these results, in silico studies by docking techniques were performed using Paclitaxel as a reference and αß-tubulin as the selected biological target. Worth highlighting is that strong hydrophobic interactions were observed between the three active molecules and the reference drug Paclitaxel, to the αß-tubulin. In consequence, it was determined that hydrophobic-aromatic moieties of bioactive compounds and Paclitaxel play a key role in making stronger interactions to the ligand-target complex. A quantitative structure activity relationship (QSAR) study revealed that the six membered rings are the most significant molecular frameworks, being present in all proposed models for the in vitro-studied cell lines. Finally, also from the docking interpretation, a ligand-based pharmacophore model is proposed in order to find further potential polyheterocyclic candidates to bind stronger to the αß-tubulin.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Técnicas de Química Sintética , Relação Quantitativa Estrutura-Atividade , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lisina/análogos & derivados , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular
11.
Org Biomol Chem ; 16(9): 1402-1418, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29238790

RESUMO

Polyheterocycles are one of the most desired synthetic targets due to their numerous and valuable applications in various fields. Multicomponent reactions (MCRs) are highly convergent one-pot processes, in which three or more reagents are combined sequentially to construct complex products, with almost all the atoms coming from the starting reagents. In this context, the syntheses of 'heterocycles' via MCR-based processes have been reviewed a number of times. However, there is not a single review (recent or otherwise) covering the synthesis of 'polyheterocycles' via a direct MCR or via a one-pot process involving MCRs coupled to further cyclizations (via ionic, metal-catalyzed, pericyclic, or free-radical-mediated cyclizations). This issue is consequently the main topic of the present review, which considers work from the last decade. The work is categorized according to the key processes involved in the syntheses of polyheterocycles, aiming to give readers an easy understanding of this MCR-based chemistry and to provide insights for further investigations. The reaction mechanisms providing novel elements to these MCR-based methods for the synthesis of polyheterocycles are also discussed.

12.
Molecules ; 23(8)2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110915

RESUMO

A series of eight new 5-aryl-benzo[f][1,7]naphthyridines were synthesized in 17 to 64% overall yields via an improved MW-assisted cascade-like one pot process (Ugi⁻three component reaction/intramolecular aza-Diels-Alder cycloaddition) coupled to an aromatization process from tri-functional dienophile-containing ester-anilines, substituted benzaldehydes and the chain-ring tautomerizable 2-isocyano-1-morpholino-3-phenylpropan-1-one as starting reagents, under mild conditions. The doubly activated dienophile and the aza-diene functionalities of the eight new Ugi-adducts were exploited to perform an in situ aza-Diels-Alder cycloaddition/aromatization (dehydration/oxidation) process, toward the complex polysubstituted 5-aryl-polyheterocycles, which could be taken as starting point for further SAR studies because the benzo[f][1,7]naphthyridine is the core of various bioactive products. It is relevant to emphasize that the synthesis or isolation of benzo[f][1,7]naphthyridines containing a substituted aromatic ring in the C-5 position, has not been published before.


Assuntos
Ciclização , Reação de Cicloadição , Naftiridinas/síntese química , Técnicas de Química Combinatória , Micro-Ondas , Estrutura Molecular , Naftiridinas/química
13.
Molecules ; 23(4)2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29584639

RESUMO

We describe the one-pot synthesis of twenty polyheterocyclic pyrrolo[3,4-b]pyridin-5-ones via a cascade process (Ugi-3CR/aza Diels-Alder/N-acylation/aromatization) in 20 to 95% overall yields, as well as four pharmacologically promising analogues via an improved cascade process (Ugi-3CR/aza Diels-Alder/N-acylation/aromatization/SN2): two piperazine-linked pyrrolo[3,4-b]pyridin-5-ones in 33 and 34%, and a couple of Falipamil aza-analogues in 30 and 35% overall yields. It is worth highlighting the good substrate scope found, because final products are furnished with alkyl, aryl, and heterocyclic substituents. The use of chain-ring tautomerizable isocyanides (as key reagents for the Ugi-type three component reaction) allowed for a rapid and efficient assembly of the polysubstituted oxindoles, which were used in situ toward the complex products, conferring features like robustness, sustainability, and the one-pot approach to this synthetic methodology.


Assuntos
Piridonas/síntese química , Pirróis/síntese química , Acilação , Ciclização , Estrutura Molecular , Ftalimidas/química , Piridonas/química , Pirróis/química , Estereoisomerismo
14.
J Am Chem Soc ; 139(22): 7549-7557, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28502167

RESUMO

We report for the first time the high sorption properties of a molecular rotor with no permanent voids or channels in its crystal structure. Such crystalline phase originates from THF, DCM, or the irreversible desolvation of entrapped benzene molecules. From these, the benzene in its solvate form acts as rotation stopper, as supported by dynamic characterization using solid-state 2H NMR experiments. In the solvent-free form, the diffusion of small quantities of iodine vapors caused a significant change in the intramolecular rotation, increasing the known activation energy to rotation from 8.5 to 10.6 kcal mol-1. Notably, those results paved the way for the discovery of the high CO2 uptake (201.6 cm3 g-1 at 196 K, under 1 atm) and acetone (5 wt %), a sorption property that was attributed to both, the restriction of the molecular rotation at low temperatures and the flexibility of the molecular axle made of conjugated p-(ethynylphenylene), surrounded by carbazole.

15.
Inorg Chem ; 56(10): 5863-5872, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28448142

RESUMO

The bottleneck effect of confined N,N-dimethylformamide (DMF) molecules was observed in InOF-1 for the first time: CO2 capture was remarkably enhanced in samples of as-synthesized InOF-1, thermally activated in such a way that a small residual amount of DMF molecules remained confined within the pores (DMF@InOF-1). Dynamic CO2 adsorption experiments on DMF@InOF-1 exhibited a CO2 capture of 8.06 wt % [1.5-fold higher than that of a fully activated InOF-1 (5.24%)]. DMF@InOF-1 can reversibly adsorb/desorb 8.09% CO2 with no loss of CO2 capacity after 10 cycles, and the desorption is accomplished by only turning the CO2 flow off. Static CO2 adsorption experiments (at 196 K) demonstrated a 1.4-fold CO2 capture increase (from 5.5 mmol·g-1, fully activated InOF-1, to 7.5 mmol·g-1, DMF@InOF-1). Therefore, these CO2 capture properties are the result of the presence of residual-confined DMF molecules within the InOF-1 framework and their interactions via a very strong hydrogen bond with the In2(µ-OH) groups, which prevent DMF leaching. The stability of this hydrogen bond is given by a perfect fit of the DMF molecule in the "dent" around the OH group that allows a nearly ideal orientation of the DMF molecule towards the OH group.

16.
Org Biomol Chem ; 15(11): 2363-2369, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28066847

RESUMO

A rapid and efficient synthesis of a series of (±)-nuevamine, (±)-lennoxamine and magallanesine aza analogues is described. The synthetic strategy involves Ugi-3CR and two further condensation processes, aza-Diels-Alder cycloaddition and the Pomeranz-Fritsch reaction. The variation of the chain-size in aldehyde moieties provided structural diversity in only two operational reaction steps.


Assuntos
Dioxanos/síntese química , Alcaloides Indólicos/síntese química , Dioxanos/química , Alcaloides Indólicos/química , Estrutura Molecular , Estereoisomerismo
17.
Inorg Chem ; 55(15): 7219-28, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27030923

RESUMO

([Sc2(OH)2(BPTC)]) (H4BPTC = biphenyl-3,3',5,5'-tetracarboxylic acid), MFM-400 (MFM = Manchester Framework Material, previously designated NOTT), and ([Sc(OH)(TDA)]) (H2TDA = thiophene-2,5-dicarboxylic acid), MFM-401, both show selective and reversible capture of CO2. In particular, MFM-400 exhibits a reasonably high CO2 uptake at low pressures and competitive CO2/N2 selectivity coupled to a moderate isosteric heat of adsorption (Qst) for CO2 (29.5 kJ mol(-1)) at zero coverage, thus affording a facile uptake-release process. Grand canonical Monte Carlo (GCMC) and density functional theory (DFT) computational analyses of CO2 uptake in both materials confirmed preferential adsorption sites consistent with the higher CO2 uptake observed experimentally for MFM-400 over MFM-401 at low pressures. For MFM-400, the Sc-OH group participates in moderate interactions with CO2 (Qst = 33.5 kJ mol(-1)), and these are complemented by weak hydrogen-bonding interactions (O···H-C = 3.10-3.22 Å) from four surrounding aromatic -CH groups. In the case of MFM-401, adsorption is provided by cooperative interactions of CO2 with the Sc-OH group and one C-H group. The binding energies obtained by DFT analysis for the adsorption sites for both materials correlate well with the observed moderate isosteric heats of adsorption for CO2. GCMC simulations for both materials confirmed higher uptake of EtOH compared with nonpolar vapors of toluene and cyclohexane. This is in good correlation with the experimental data, and DFT analysis confirmed the formation of a strong hydrogen bond between EtOH and the hydrogen atom of the hydroxyl group of the MFM-400 and MFM-401 framework (FW) with H-OEtOH···H-OFW distances of 1.77 and 1.75 Å, respectively. In addition, the accessible regeneration of MFM-400 and MFM-401 and release of CO2 potentially provide minimal economic and environmental penalties.

18.
Inorg Chem ; 53(1): 282-8, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24359324

RESUMO

The porous Phosphine Coordination Material, PCM-10 contains abundant free P(III) donor sites that can be subjected to a variety of post-synthetic modifications. The diverse P(III)/P(V) organic reactivity and coordination chemistry available to aryl phosphines have been exploited to decorate the pores of PCM-10, allowing for an extensive structure-function study. Polar P═O moieties, charged P(+)-CH3 phosphonium species with exchangeable coanions (I(-), F(-), BF4(-), and PF6(-)) and P-AuCl groups have been successfully post-synthetically incorporated. These modifications directly affect the strength of the resulting host-guest interactions, as demonstrated by comparative sorption studies of CO2, H2, and other gases in the solid-state. Broad tunability of the enthalpy of CO2 adsorption is observed: incorporation of BF4(-) ions inside the pores of PCM-10 results in 24% enhancement of the isosteric adsorption enthalpy of CO2 compared to the parent material, while F(-) anions induce a 36% reduction. Meanwhile, AuCl-decorated PCM-10 shows a high H2 sorption capacity of 4.72 wt % at 77 K and 1.0 bar, versus only 0.63 wt % in the unmodified material.

19.
Inorg Chem ; 53(24): 12674-6, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25469878

RESUMO

Two new isostructural phosphine coordination materials, Ln-PCM-21 (Ln = Pr, Nd), have been obtained using a tris(p-carboxylated) methyltriphenylphosphonium ligand that is formally dianionic when triply deprotonated, allowing access to materials based on uncommon metal-to-ligand ratios. The polymers of the formula [Ln3(mptbc)4]X·solv (X = Cl(-), NO3(-)) are cationic and contain unusual, linear oxo-bridged [Ln3](9+) clusters. Magnetic susceptibility data for both the Pr and Nd analogues has been compared to models based on three contrasting approaches.

20.
Chem Commun (Camb) ; 60(22): 3008-3018, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38376468

RESUMO

Confinement is a very common phenomenon in chemistry, for example, when molecules are located inside cavities. In these conditions, the electronic structure of atoms and molecules is modified. These changes could be mapped through the interaction with other molecules since non-covalent interactions between molecules are also influenced by confinement. In this work we address both topics, non-covalent interactions, and confined systems, using quantum chemistry tools with new software, emphasizing the importance of analyzing both fields simultaneously.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA