Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Biomacromolecules ; 24(4): 1731-1743, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36922716

RESUMO

Peripheral nerve injury is one of the most debilitating pathologies that severely impair patients' life. Although many efforts have been made to advance in the treatment of such a complex disorder, successful strategies to ensure full recovery are still scarce. The aim of the present work was to develop flexible and mechanically resistant platforms intended to act as a support and guide for neural cells during the regeneration process of peripheral nerve injury. For this purpose, poly(lactic-co-glycolic acid) (PLGA)/poly(d,l-lactic acid) (PDLLA)/poly(ethylene glycol) 400 (PEG)-multichannel-based scaffolds (MCs) were prepared through a multistep process involving electrospun microfibers coated with a polymer blend solution and used as a sacrificial mold. In particular, scaffolds characterized by random (MCR) and aligned (MCA) multichannel were obtained. A design of experiments approach (DoE) was employed to identify a scaffold-optimized composition. MCs were characterized for morphological and mechanical properties, suturability, degradability, cell colonization, and in vivo safety. A new biodegradable, biocompatible, and safe microscale multichannel scaffold was developed as the result of an easy multistep procedure.


Assuntos
Traumatismos dos Nervos Periféricos , Ácido Poliglicólico , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Láctico , Alicerces Teciduais
2.
J Transl Med ; 13: 219, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26152232

RESUMO

OBJECTIVE: Mesenchymal stromal cells (MSCs) expanded in vitro have been proposed as a potential therapy for congenital or acquired skin defects in pediatrics. The aim of this pre-clinical study was to investigate the effects of intradermal injections of MSC in experimental cutaneous wound repair comparing allogeneic and autologous adipose stem cells (ASCs) and autologous bone marrow-mesenchymal stromal cells (BM-MSCs). METHODS: Mesenchymal stromal cells were in vitro expanded from adipose and BM tissues of young female New Zealand rabbits. MSCs were characterized for plastic adhesion, surface markers, proliferation and differentiation capacity. When an adequate number of cells (ASCs 10 × 10(6) and BM-MSCs 3 × 10(6), because of their low rate of proliferation) was reached, two skin wounds were surgically induced in each animal. The first was topically treated with cell infusions, the second was used as a control. The intradermal inoculation included autologous or allogeneic ASCs or autologous BM-MSCs. For histological examination, animals were sacrificed and wounds were harvested after 11 and 21 days of treatment. RESULTS: Rabbit ASCs were isolated and expanded in vitro with relative abundance, cells expressed typical surface markers (CD49e, CD90 and CD29). Topically, ASC inoculation provided more rapid wound healing than BM-MSCs and controls. Improved re-epithelization, reduced inflammatory infiltration and increased collagen deposition were observed in biopsies from wounds treated with ASCs, with the best result in the autologous setting. ASCs also improved restoration of skin architecture during wound healing. CONCLUSION: The use of ASCs may offer a promising solution to treat extended wounds. Pre-clinical studies are however necessary to validate the best skin regeneration technique, which could be used in pediatric surgical translational research.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Pele/patologia , Procedimentos Cirúrgicos Operatórios , Cicatrização , Tecido Adiposo/citologia , Administração Cutânea , Animais , Células da Medula Óssea/citologia , Núcleo Celular/metabolismo , Proliferação de Células , Criança , Colágeno/metabolismo , Epitélio/patologia , Feminino , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Coelhos , Regeneração
3.
Reprod Biomed Online ; 29(4): 457-69, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25131558

RESUMO

To characterize different cell populations in the human ovary, morphological and functional characteristics of cell populations collected during routine IVF procedures were studied. Cells obtained from follicular fluid grew in vitro under minimal medium conditions, without growth factor, including leukaemia-inhibiting factor. Morphological analysis revealed a heterogeneous cell population, with cells displaying a fibroblast-like, epithelial-like and also neuron-like features. Morpho-functional characteristics of fibroblast-like cells were similar to mesenchymal stem cells, and, in particular, were positive for mesenchymal stemness markers, including CD90, CD44, CD105, CD73, but negative for epithelial proteins, such as cytokeratins, CD34 and CD45 antigens. Cell proliferation activity at different times and colony-forming unit capability were evaluated, and multipotency of a subset of granulosa cells was established by in-vitro differentiation studies (e.g. osteogenic, chondrogenic and adipogenic differentiation). This study suggests that cells provided by mesenchymal plasticity can be easily isolated by waste follicular fluid, avoiding scraping of human ovaries, and cultivated in minimal conditions. Successful growth of such progenitor cells on three-dimensional cryogel scaffold provides the basis for future developments in tissue engineering. This culture system may be regarded as an experimental model in which biological behaviour is not influenced by specific growth factors.


Assuntos
Líquido Folicular/citologia , Resíduos de Serviços de Saúde , Células-Tronco Mesenquimais/citologia , Adulto , Antígenos CD/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Separação Celular , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Feminino , Fertilização in vitro , Humanos , Infertilidade Feminina/metabolismo , Infertilidade Feminina/patologia , Itália , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Recuperação de Oócitos , Indução da Ovulação , Alicerces Teciduais
4.
Int J Pharm ; 656: 124119, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621616

RESUMO

Nowadays, chronic wounds are the major cause of morbidity worldwide and the healthcare costs related to wound care are a billion-dollar issue; chronic wounds involve a non-healing process that makes necessary the application of advanced wound dressings to promote skin integrity recovery. Functionally Graded Scaffolds (FGSs) are currently driving interest as promising candidates in mimicking the skin tissue environment and, thus, in enhancing a faster and more effective wound healing process. Aim of the present work was to design and develop a porous FGS based on κ-carrageenan (κCG) for the management of chronic skin wounds; a freeze-drying process was optimized to obtain in a single-step a three-layered FGS characterized by a pore size gradient functional to mimic the structure of native skin tissue. In addition to κCG, arginine and whey protein isolate were used as multifunctional agents for FGS preparation; these substances can not only intervene in some stages of wound healing but are able to establish non-covalent interactions with κCG, which were responsible for the production of layers with different pore size, water content capability and mechanical properties. Cell migration, adhesion and proliferation within the FGS structure were evaluated in vitro on fibroblasts and FGS wound healing potential was also studied in vivo on a murine model.


Assuntos
Carragenina , Fibroblastos , Liofilização , Cicatrização , Liofilização/métodos , Cicatrização/efeitos dos fármacos , Animais , Porosidade , Camundongos , Carragenina/química , Fibroblastos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Alicerces Teciduais , Adesão Celular , Masculino , Pele/metabolismo
5.
Mater Today Bio ; 29: 101292, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39483391

RESUMO

Chronic wounds are non-healing lesions characterized by a high degree of inflammation, posing significant challenges in clinical management due to the increased risk of severe infection. This study focuses on developing a powder for cutaneous application to enhance the healing and prevent infections in chronic wounds. The smart nanocomposites-based biomimetic microparticles here developed combine the properties of chitosan and of clays and represent a significant innovation in the field of biomaterials for skin regeneration since they possess enhanced antimicrobial properties, are multi-functional scaffolds and promote cell proliferation, support tissue reconstruction by mimicking the natural extracellular matrix, and provide hemostatic properties to control bleeding during wound closure. The microparticles were made of chitosan and doped with clay minerals, specifically montmorillonite or layered double hydroxides, containing copper ions. The synergistic combination of biomimetic polymers and clays aims to regulate cellular responses, angiogenesis, and extracellular matrix (ECM) deposition, leveraging the bioactive properties of both components to promote wound healing. Montmorillonite and layered double hydroxides were enriched with copper ions through intercalation or coprecipitation methods, respectively. The water-insoluble microparticles were prepared using a chitosan derivative, chitosan carbamate, synthesized to obtain chitosan-based microparticles via spray-drying without crosslinkers. Physico-chemical characterization confirmed the successful doping of Cu-clay interaction products in the microparticles. In addition to enhanced cell proliferation and hemostatic properties, the presence of Cu-clays boosted the microparticles' antibacterial properties. Encouraging preclinical in vitro and in vivo results suggest that these smart nanocomposite biomimetic microparticles doped with Cu-enriched clay minerals could be promising candidates for simultaneously enhancing healing and controlling infections in chronic wounds.

6.
Int J Pharm ; 652: 123822, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242257

RESUMO

Tendon disorders are common injuries, which can be greatly debilitating as they are often accompanied by great pain and inflammation. Moreover, several problems are also related to the laceration of the tendon-to-bone interface (TBI), a specific region subjected to great mechanical stresses. The techniques used nowadays for the treatment of tendon and TBI injuries often involve surgery. However, one critical aspect of this procedure involves the elevated risk of fail due to the tissues weakening and the postoperative alterations of the normal joint mechanics. Synthetic polymers, such as thermoplastic polyurethane, are of special interest in the tissue engineering field as they allow the production of scaffolds with tunable elastic and mechanical properties, that could guarantee an effective support during the new tissue formation. Based on these premises, the aim of this work was the design and the development of highly porous 3D scaffolds based on thermoplastic polyurethane, and doped with chondroitin sulfate and caseinophosphopeptides, able to mimic the structural, biomechanical, and biochemical functions of the TBI. The obtained scaffolds were characterized by a homogeneous microporous structure, and by a porosity optimal for cell nutrition and migration. They were also characterized by remarkable mechanical properties, reaching values comparable to the ones of the native tendons. The scaffolds promoted the tenocyte adhesion and proliferation when caseinophosphopetides and chondroitin sulfate are present in the 3D structure. In particular, caseinophosphopeptides' optimal concentration for cell proliferation resulted 2.4 mg/mL. Finally, the systems evaluation in vivo demonstrated the scaffolds' safety, since they did not cause any inflammatory effect nor foreign body response, representing interesting platforms for the regeneration of injured TBI.


Assuntos
Sulfatos de Condroitina , Alicerces Teciduais , Alicerces Teciduais/química , Porosidade , Sulfatos de Condroitina/química , Poliuretanos/química , Engenharia Tecidual/métodos , Regeneração Óssea , Tendões
7.
Cancers (Basel) ; 16(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39061220

RESUMO

INTRODUCTION: Decellularized extracellular matrix (ECM) bioscaffolds have emerged as a promising three-dimensional (3D) model, but so far there are no data concerning their use in radiobiological studies. MATERIAL AND METHODS: We seeded two well-known radioresistant cell lines (HMV-II and PANC-1) in decellularized porcine liver-derived scaffolds and irradiated them with both high- (Carbon Ions) and low- (Photons) Linear Energy Transfer (LET) radiation in order to test whether a natural 3D-bioscaffold might be a useful tool for radiobiological research and to achieve an evaluation that could be as near as possible to what happens in vivo. RESULTS: Biological scaffolds provided a favorable 3D environment for cell proliferation and expansion. Cells did not show signs of dedifferentiation and retained their distinct phenotype coherently with their anatomopathological and clinical behaviors. The radiobiological response to high LET was higher for HMV-II and PANC-1 compared to the low LET. In particular, Carbon Ions reduced the melanogenesis in HMV-II and induced more cytopathic effects and the substantial cell deterioration of both cell lines compared to photons. CONCLUSIONS: In addition to offering a suitable 3D model for radiobiological research and an appropriate setting for preclinical oncological analysis, we can attest that bioscaffolds seemed cost-effective due to their ease of use, low maintenance requirements, and lack of complex technology.

8.
Int J Pharm ; 634: 122669, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36736969

RESUMO

Fiber spinning technologies attracted a great interest since the beginning of the last century. Among these, electrospinning is a widely diffuse technique; however, it presents some drawbacks such as low fiber yield, high energy demand and the use of organic solvents. On the contrary, centrifugal spinning is a more sustainable method and allows to obtain fiber using centrifugal force and melted materials. The aim of the present work was the design and the development of polydioxanone (PDO) microfibers intended for tissue engineering, using centrifugal spinning. PDO, a bioresorbable polymer currently used for sutures, was selected as low melting polyester and DES (deep eutectic solvents), either choline chloride/citric acid (ChCl/CA) or betaine/citric acid (Bet/CA) 1:1 M ratio, were used to improve PDO spinnability. Physical mixtures of DES and PDO were prepared using different weight ratios. These were then poured into the spinneret and melted at 140 °C for 5 min. After the complete melting, the blends were spun for 1 min at 700 rpm. The fibers were characterized for physico chemical properties (morphology; dimensions; chemical structure; thermal behavior; mechanical properties). Moreover, the preclinical investigation was performed in vitro (biocompatibility, adhesion and proliferation of fibroblasts) and in vivo (murine burn/excisional model to assess safety and efficacy). The multidisciplinary approach allowed to obtain an extensive characterization to develop PDO based microfibers as medical device for implant to treat full thickness skin wounds.


Assuntos
Polidioxanona , Engenharia Tecidual , Camundongos , Animais , Polidioxanona/química , Poliésteres/química , Pele , Polímeros , Alicerces Teciduais/química
9.
ACS Appl Mater Interfaces ; 15(22): 26510-26524, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37220144

RESUMO

Tendon disorders are common medical conditions, which can be greatly debilitating as they are often accompanied by great pain and inflammation. The techniques used nowadays for the treatment of chronic tendon injuries often involve surgery. However, one critical aspect of this procedure involves the scar tissue, characterized by mechanical properties that vary from healthy tissue, rendering the tendons inclined to reinjury or rupture. Synthetic polymers, such as thermoplastic polyurethane, are of special interest in the tissue engineering field as they allow the production of scaffolds with controlled elastic and mechanical properties, which could guarantee an effective support during the new tissue formation. The aim of this work was the design and the development of tubular nanofibrous scaffolds based on thermoplastic polyurethane and enriched with cerium oxide nanoparticles and chondroitin sulfate. The scaffolds were characterized by remarkable mechanical properties, especially when tubular aligned, reaching values comparable to the ones of the native tendons. A weight loss test was performed, suggesting a degradation in prolonged times. In particular, the scaffolds maintained their morphology and also remarkable mechanical properties after 12 weeks of degradation. The scaffolds promoted the cell adhesion and proliferation, in particular when in aligned conformation. Finally, the systems in vivo did not cause any inflammatory effect, representing interesting platforms for the regeneration of injured tendons.


Assuntos
Sulfatos de Condroitina , Alicerces Teciduais , Poliuretanos , Engenharia Tecidual/métodos , Tendões , Proliferação de Células
10.
Front Bioeng Biotechnol ; 11: 1225722, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37650039

RESUMO

Introduction: Recently, mycelia of Ganoderma lucidum and Pleurotus ostreatus, edible fungi, have been characterized in vitro as self-growing biomaterials for tissue engineering since they are constituted of interconnected fibrous networks resembling the dermal collagen structure. Aim: This work aims to investigate the biopharmaceutical properties of G. lucidum and P. ostreatus mycelia to prove their safety and effectiveness in tissue engineering as dermal substitutes. Methods: The mycelial materials were characterized using a multidisciplinary approach, including physicochemical properties (morphology, thermal behavior, surface charge, and isoelectric point). Moreover, preclinical properties such as gene expression and in vitro wound healing assay have been evaluated using fibroblasts. Finally, these naturally-grown substrates were applied in vivo using a murine burn/excisional wound model. Conclusions: Both G. lucidum and P. ostreatus mycelia are biocompatible and able to safely and effectively enhance tissue repair in vivo in our preclinical model.

11.
Int J Biol Macromol ; 242(Pt 3): 125000, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37217043

RESUMO

Herein we developed a hydrogel based porous cross-linked scaffold intended for the treatment of chronic skin ulcers. It is made of collagen, the most abundant protein of mammals ECM, and chitosan, a natural polysaccharide endowed with numerous positive cues for wound repair. Different cross-linking methods, namely UV irradiation with the addition of glucose, addition of tannic acid as cross-linking agent and ultrasonication, were employed to prepare a cross-linked hydrogel with a highly interconnected 3D internal structure. The variables considered critical to obtain a suitable system for the envisaged application are the composition of hydrogels, especially the concentration of chitosan, and the concentration ratio between chitosan and collagen. Stable systems, characterized by high porosity, were obtained thanks to the use of freeze-drying process. To assess the influence of the above-mentioned variables on scaffold mechanical properties, a Design of Experiments (DoE) approach was exploited, which resulted in the identification of the best hydrogel composition. In vitro and in vivo assays on a fibroblast model cell line and on a murine model, respectively, demonstrated scaffold biocompatibility, biomimicry, and safety.


Assuntos
Quitosana , Camundongos , Animais , Quitosana/química , Porosidade , Alicerces Teciduais/química , Colágeno/química , Hidrogéis/farmacologia , Hidrogéis/química , Engenharia Tecidual/métodos , Mamíferos
12.
Antioxidants (Basel) ; 12(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36829832

RESUMO

Clove oil (CO) is a powerful antioxidant essential oil (EO) with anti-inflammatory, anesthetic, and anti-infective properties. It can be therefore considered a good candidate for wound-healing applications, especially for chronic or diabetic wounds or burns, where the balance of reactive oxygen species (ROS) production and detoxification is altered. However, EOs require suitable formulations to be efficiently administered in moist wound environments. Chitosan hydrophobically modified by an ionic interaction with oleic acid (chitosan oleate, CSO) was used in the present work to stabilize CO nanoemulsions (NEs). The dimensions of the NE were maintained at around 300 nm as the volume distribution for up to six months, and the CO content did not decrease to under 80% over 4 months, confirming the good stabilizing properties of CSO. The antioxidant properties of the CO NE were evaluated in vitro by a 2,2-diphenil-2-picrylhydrazyl hydrate (DPPH) assay, and in fibroblast cell lines by electron paramagnetic resonance (EPR) using α-phenyl-N-tert-butyl nitrone (PBN) as a spin trap; a protective effect was obtained comparable to that obtained with α-tocopherol treatment. In a murine burn model, the ability of CO formulations to favor macroscopic wound closure was evidenced, and a histological analysis revealed a positive effect of the CO NE on the reparation of the lesion after 18 days. Samples of wounds at 7 days were subjected to a histological analysis and parallel dosage of lipid peroxidation by means of a thiobarbituric acid-reactive substances (TBARS) assay, confirming the antioxidant and anti-inflammatory activity of the CO NE.

13.
Int J Pharm ; 640: 123015, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37156308

RESUMO

Periodontal regeneration is extremely limited and unpredictable due to structural complications, as it requires the simultaneous restoration of different tissues, including cementum, gingiva, bone, and periodontal ligament. In this work, spray-dried microparticles based on green materials (polysaccharides - gums - and a protein - silk fibroin) are proposed to be implanted in the periodontal pocket as 3D scaffolds during non-surgical treatments, to prevent the progression of periodontal disease and to promote the healing in mild periodontitis. Arabic or xanthan gum have been associated to silk fibroin, extracted from Bombyx mori cocoons, and loaded with lysozyme due to its antibacterial properties. The microparticles were prepared by spray-drying and cross-linked by water vapor annealing, inducing the amorphous to semi-crystalline transition of the protein component. The microparticles were characterized in terms of their chemico-physical features (SEM, size distribution, structural characterization - FTIR and SAXS, hydration and degradation properties) and preclinical properties (lysozyme release, antibacterial properties, mucoadhesion, in vitro cells adhesion and proliferation and in vivo safety on a murine incisional wound model). The encouraging preclinical results highlighted that these three-dimensional (3D) microparticles could provide a biocompatible platform able to prevent periodontitis progression and to promote the healing of soft tissues in mild periodontitis.


Assuntos
Bombyx , Fibroínas , Periodontite , Camundongos , Animais , Fibroínas/química , Muramidase , Espalhamento a Baixo Ângulo , Difração de Raios X , Bombyx/metabolismo , Periodontite/tratamento farmacológico , Polissacarídeos , Antibacterianos/farmacologia , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Engenharia Tecidual
14.
Biomater Adv ; 133: 112593, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35527142

RESUMO

The goal of this work is the design and the development of scaffolds based on maltodextrin (MD) to recover chronic lesions. MD was mixed with arginine/lysine/polylysine and the electrospinning was successfully used to prepare scaffolds with uniform and continuous nanofibers having regular shape and smooth surface. A thermal treatment was applied to obtain insoluble scaffolds in aqueous environment, taking the advantage of amino acids-polysaccharide conjugates formed via Maillard-type reaction. The morphological analysis showed that the scaffolds had nanofibrous structures, and that the cross-linking by heating did not significantly change the nanofibers' dimensions and did not alter the system stability. Moreover, the heating process caused a reduction of free amino group and proportionally increased scaffold cross-linking degree. The scaffolds were elastic and resistant to break, and possessed negative zeta potential in physiological fluids. These were characterized by direct antioxidant properties and Fe2+ chelation capability (indirect antioxidant properties). Moreover, the scaffolds were cytocompatible towards fibroblasts and monocytes-derived macrophages, and did not show any significant pro-inflammatory activity. Finally, those proved to accelerate the recovery of the burn/excisional wounds. Considering all the features, MD-poly/amino acids scaffolds could be considered as promising medical devices for the treatment of chronic wounds.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Aminoácidos , Antioxidantes , Polissacarídeos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
15.
Mater Today Bio ; 16: 100418, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36157051

RESUMO

Chronic wounds (resulting from underlying disease, metabolic disorders, infections, trauma, and even tumours) pose significant health problems. In this work, microparticles, based on polysaccharides (maltodextrin or dextran) and amino acids, and doped with antibacterial nanoparticles (CuO or ZnO NPs) are designed. Smart nano-in-microparticles with a hierarchical 3D structure are developed. The ultimate goal aims at an innovative platform to achieve skin repair and to manage skin colonization by avoiding infection that could delay and even impair the healing process. The microparticles are prepared by spray-drying and cross-linked by heating, to obtain insoluble scaffolds able to facilitate cell proliferation in the wound bed. The nano-in-microparticles are characterized using a multidisciplinary approach: chemico-physical properties (SEM, SEM-EDX, size distribution, swelling and degradation properties, structural characterization - FTIR, XRPD, SAXS - mechanical properties, surface zeta potential) and preclinical properties (in vitro biocompatibility and whole-blood clotting properties, release studies and antimicrobial properties, and in vivo safety and efficacy on murine burn/excisional wound model) were assessed. The hierarchical 3D nano-in microparticles demonstrate to promote skin tissue repair in a preclinical study, indicating that this platform deserves particular attention and further investigation will promote the prototypes translation to clinics.

16.
Biomedicines ; 10(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36359336

RESUMO

BACKGROUND: In end-stage chronic liver disease, transplantation represents the only curative option. However, the shortage of donors results in the death of many patients. To overcome this gap, it is mandatory to develop new therapeutic options. In the present study, we decellularised pig livers and reseeded them with allogeneic porcine mesenchymal stromal cells (pMSCs) to understand whether extracellular matrix (ECM) can influence and/or promote differentiation into hepatocyte-like cells (HLCs). METHODS: After decellularisation with SDS, the integrity of ECM-scaffolds was examined by histological staining, immunofluorescence and scanning electron microscope. DNA quantification was used to assess decellularisation. pMSCs were plated on scaffolds by static seeding and maintained in in vitro culture for 21 days. At 3, 7, 14 and 21 days, seeded ECM scaffolds were evaluated for cellular adhesion and growth. Moreover, the expression of specific hepatic genes was performed by RT-PCR. RESULTS: The applied decellularisation/recellularisation protocol was effective. The number of seeded pMSCs increased over the culture time points. Gene expression analysis of seeded pMSCs displayed a weak induction due to ECM towards HLCs. CONCLUSIONS: These results suggest that ECM may address pMSCs to differentiate in hepatocyte-like cells. However, only contact with liver-ECM is not enough to induce complete differentiation.

17.
Carbohydr Polym ; 220: 219-227, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31196543

RESUMO

Burns and chronic wounds, often related to chronic diseases (as diabetes and cancer), are challenging lesions, difficult to heal. The prompt and full reconstitution of a functional skin is at the basis of the development of biopolymer-based scaffolds, representing a 3D substrate mimicking the dermal extracellular matrix. Aim of the work was to develop scaffolds intended for skin regeneration, according to: fabrication by electrospinning from aqueous polysaccharide solutions; prompt and easy treatment to obtain scaffolds insoluble in aqueous fluids; best performance in supporting wound healing. Three formulations were tested, based on chitosan (CH) and pullulan (P), associated with glycosaminoglycans (chondroitin sulfate - CS or hyaluronic acid - HA). A multidisciplinary approach has been used: chemico-physical characterization and preclinical evaluation allowed to obtain integrated information. This supports that CS gives distinctive properties and optimal features to the scaffold structure for promoting cell proliferation leading tissue reparation towards a complete skin restore.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Sulfatos de Condroitina/química , Glucanos/química , Ácido Hialurônico/química , Engenharia Tecidual , Alicerces Teciduais , Cicatrização , Materiais Biocompatíveis/uso terapêutico , Queimaduras/terapia , Humanos , Pele Artificial
18.
Regen Med ; 13(4): 385-394, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29985749

RESUMO

AIM: We evaluated the effects of the intradermal injection of extracellular vesicles (EVs) derived from adipose stem cells (ASC-EVs) and bone marrow cells (BM-EVs) in an experimental cutaneous wound repair model. METHODS: Mesenchymal stem cells (MSCs) were in vitro expanded from adipose (ASC) or BM tissues (BM-MSC) of rabbits. EVs were separated from the supernatants of confluent ASC and BM-MSCs. Two skin wounds were induced in each animal and treated with MSC or EV injections. Histological examination was performed postinoculation. RESULTS: EV-treated wounds exhibited a better restoration compared with the counterpart MSC treatment. ASC-EV-treated wounds were significantly better than BM-EVs (p = 0.036). CONCLUSION: EV topical inoculation provides restored architecture during cutaneous wound healing and represents a promising solution for regenerative medicine in children.


Assuntos
Micropartículas Derivadas de Células/transplante , Células-Tronco Mesenquimais/metabolismo , Cicatrização , Ferimentos e Lesões/terapia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Feminino , Humanos , Células-Tronco Mesenquimais/patologia , Coelhos , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
19.
Int J Nanomedicine ; 13: 175-186, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29343956

RESUMO

Chronic wounds and severe burns are diseases responsible for severe morbidity and even death. Wound repair is a crucial process and tissue regeneration enhancement and infection prevention are key factors to minimize pain, discomfort, and scar formation. The aim of this work was the development of lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers [NLC]), to be loaded with eucalyptus or rosemary essential oils and to be used, as medical devices, to enhance healing of skin wounds. Lipid nanoparticles were based on natural lipids: cocoa butter, as solid lipid, and olive oil or sesame oil, as liquid lipids. Lecithin was chosen as surfactant to stabilize nanoparticles and to prevent their aggregation. The systems were prepared by high shear homogenization followed by ultrasound application. Nanoparticles were characterized for physical-chemical properties, bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward normal human dermal fibroblasts. Antimicrobial activity of nanoparticles was evaluated against two reference microbial strains, one of Staphylococcus aureus, the other of Streptococcus pyogenes. Finally, the capability of nanoparticles to promote wound healing in vivo was evaluated on a rat burn model. NLC based on olive oil and loaded with eucalyptus oil showed appropriate physical-chemical properties, good bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward fibroblasts, associated to antimicrobial properties. Moreover, the in vivo results evidenced the capability of these NLC to enhance the healing process. Olive oil, which is characterized by a high content of oleic acid, proved to exert a synergic effect with eucalyptus oil with respect to antimicrobial activity and wound repair promotion.


Assuntos
Anti-Infecciosos/farmacologia , Nanopartículas/química , Óleos Voláteis/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Eucalyptus/química , Fibroblastos , Humanos , Lecitinas/química , Lipídeos/química , Masculino , Nanopartículas/administração & dosagem , Óleos Voláteis/administração & dosagem , Óleos Voláteis/química , Ratos , Ratos Wistar , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pyogenes/efeitos dos fármacos
20.
Expert Opin Drug Deliv ; 14(4): 453-465, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28276966

RESUMO

BACKGROUND: In situ forming biodegradable poly(ε-caprolactone) (PCL) microspheres (PCL-ISM) system was developed as a novel embolic agent for transarterial embolization (TAE) therapy of hepatocellular carcinoma (HCC). Ibuprofen sodium (Ibu-Na) was loaded on this platform to evaluate its potential for the treatment of post embolization syndrome. METHODS: The influence of formulation parameters on the size/shape, encapsulation efficiency and drug release was investigated using mixture experimental design. Regression models were derived and used to optimize the formulation for particle size, encapsulation efficiency and drug release profile for TAE therapy. An ex vivo model using isolated rat livers was established to assess the in situ formation of microspheres. RESULTS: All PCL-ISM components affected the studied properties and fitting indices of the regression models were high (Radj2 = 0.810 for size, 0.964 encapsulation efficiency, and 0.993 or 0.971 for drug release at 30 min or 48 h). The optimized composition was: PCL = 4%, NMP = 43.1%, oil = 48.9%, surfactant = 2% and drug = 2%. Ex vivo studies revealed that PCL-ISM was able to form microspheres in the hepatic arterial bed. CONCLUSIONS: PCL-ISM system provides a novel tool for the treatment of HCC and post-embolization syndrome. It is capable of forming microspheres with desirable size and Ibu-Na release profile after injection into blood vessels.


Assuntos
Ibuprofeno/administração & dosagem , Microesferas , Poliésteres/química , Animais , Química Farmacêutica , Liberação Controlada de Fármacos , Masculino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA