Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 187(2): 146, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31970525

RESUMO

An optical fiber nanoprobe is presented for fluorometric determination of copper(II). The method based on the use of water-dispersible AgInZnS quantum dots (QDs) deposited at the end of an optical fiber in a poly(vinyl alcohol) matrix. The fluorescnece of the QDs, best measured at excitation/emisssion wavelengths of 365/570 nm, is quenched by Cu(II) due to both static and electron transfer from the QDs to Cu(II). This is experimentally confirmed by photoluminescence and UV-vis absorption spectra, and measurement of luminescence lifetimes. The probe is highly selective and possesses a linear detection range that extends from 2.5 to 800 nM. Graphical abstractSchematic representation of an optical fiber nanoprobe based on hydrophilic AgInZnS quantum dots for fluorometric determination of copper(II). The fluorescence is quenched by Cu(II) due to static quenching and dynamic quenching. It has a detection range of 2.5-800 nM.


Assuntos
Cobre/análise , Corantes Fluorescentes/química , Fibras Ópticas , Pontos Quânticos/química , Índio/química , Lagos/análise , Prata/química , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/métodos , Sulfetos/química , Poluentes Químicos da Água/análise , Zinco/química
2.
Opt Lett ; 44(4): 999-1002, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30768045

RESUMO

In this Letter, we demonstrate, to the best of our knowledge, a novel method to generate an orbital angular momentum (OAM) based on the principle of the modal interference in a two-mode fiber. At the interference dips, the left- or right-handed circular polarized HE11 modes can be ideally converted into the ±1-order OAM beam. To verify this concept, we employed the femtosecond laser micro-processing technology to write micro-waveguides in the two-mode fiber and hence realized the in-line modal interferometer. To enhance the mode conversion efficiency at the dips, we optimized the waveguide parameters both theoretically and experimentally. The interference spectrum and spiral/fork patterns confirm the OAM beam generation with an efficiency as high as 99%.

3.
Opt Express ; 26(21): 26896-26906, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30469767

RESUMO

We propose an optically controlled tunable ultra-narrow linewidth fiber laser assisted with the mode selection induced by a saturable absorption interference ring and linewidth narrowing of fiber Rayleigh backscattering (RBS). The interference ring serves as an artificial narrow-band filter, which conduces to the laser operating at a single-frequency state. To realize narrower linewidths, additional single-mode fiber is utilized to accumulate a weak RBS feedback. On basis of inherent wavelength universality of this linewidth-narrowing mechanism, an all-optical technique is employed to enable linear and stable tunability of the laser. Cooperating with a micro-fiber Bragg grating covered by graphene, the lasing wavelength is tuned precisely and reversibly with a sensitivity of 12.4 pm/mW and a linear fitting R2 over 0.997 by changing the power of a controlling beam. During a stability test with the controlling pump power fixed, the long-term free-running power fluctuation is less than 0.5%. The Output laser linewidth is compressed to be ~200 Hz, which is also confirmed by the descending frequency noise spectrum.

4.
Opt Lett ; 43(10): 2414-2417, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762606

RESUMO

In this Letter, we demonstrated an intensity-modulated directional torsion sensor based on an in-line Mach-Zehnder interferometer in single-mode fiber. A non-circular symmetric perturbation is created to excite non-circular symmetric cladding mode and then interference with the core mode at the second perturbation. An initial rotation angle is designed between two perturbations for the purpose of discriminating the torsion direction. Both experimental and theoretical results enforce that the spectral peak/dip turns to be the dip/peak when the fiber is twisted from the counter-clockwise to the clockwise direction. Benefiting from the reversal between peak and dip, an intensity-modulated directional torsion sensor is realized in the range from -50 rad/m to 50 rad/m with a sensitivity of 45.3%/(rad/cm).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA