RESUMO
The broad contemporary applications of silver nanoparticles (AgNPs) have been associated with various toxicities including reproductive toxicity. Taurine is well acknowledged for its potent pharmacological role in numerous disease models and chemically-mediated toxicity. We investigated the effect of taurine on AgNPs-induced reproductive toxicity in male rats. The animals were intraperitoneally injected with AgNPs (200 µg/kg) alone or co-administered with taurine at 50 and 100 mg/kg for 21 successive days. Exogenous taurine administration significantly abated AgNPs-induced oxidative injury by decreasing the levels of oxidative stress indices while boosting antioxidant enzymes activities and glutathione level in the hypothalamus, testes and epididymis of exposed animals. Taurine administration alleviated AgNPs-induced inflammatory response and caspase-3 activity, an apoptotic biomarker. Moreover, taurine significantly improved spermiogram, reproductive hormones and the marker enzymes of testicular function in AgNPs-treated animals. The ameliorative effect of taurine on pathological lesions induced by AgNPs in the exposed animals was substantiated by histopathological data. This study provides the first mechanistic evidence that taurine supplementation affords therapeutic effect against reproductive dysfunction associated with AgNPs exposure in male rats.
Assuntos
Nanopartículas Metálicas , Prata , Ratos , Masculino , Animais , Prata/toxicidade , Ratos Wistar , Nanopartículas Metálicas/toxicidade , Taurina/farmacologia , Taurina/metabolismo , Testículo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse OxidativoRESUMO
The adverse effect of silver nanoparticles (AgNPs) on the nervous system is an emerging concern of public interest globally. Taurine, an essential amino acid required for neurogenesis in the nervous system, is well-documented to possess antioxidant, anti-inflammatory, and antiapoptotic activities. Yet, there is no report in the literature on the effect of taurine on neurotoxicity related to AgNPs exposure. Here, we investigated the neurobehavioral and biochemical responses associated with coexposure to AgNPs (200 µg/kg body weight) and taurine (50 and 100 mg/kg body weight) in rats. Locomotor incompetence, motor deficits, and anxiogenic-like behavior induced by AgNPs were significantly alleviated by both doses of taurine. Taurine administration enhanced exploratory behavior typified by increased track plot densities with diminished heat maps intensity in AgNPs-treated rats. Biochemical data indicated that the reduction in cerebral and cerebellar acetylcholinesterase activity, antioxidant enzyme activities, and glutathione level by AgNPs treatment were markedly upturned by both doses of taurine. The significant abatement in cerebral and cerebellar oxidative stress indices namely reactive oxygen and nitrogen species, hydrogen peroxide, and lipid peroxidation was evident in rats cotreated with AgNPs and taurine. Further, taurine administration abated nitric oxide and tumor necrosis factor-alpha levels cum myeloperoxidase and caspase-3 activities in AgNPs-treated rats. Amelioration of AgNPs-induced neurotoxicity by taurine was confirmed by histochemical staining and histomorphometry. In conclusion, taurine via attenuation of oxido-inflammatory stress and caspase-3 activation protected against neurotoxicity induced by AgNPs in rats.