Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Acc Chem Res ; 55(6): 844-856, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35201767

RESUMO

The catalytic reduction of carbon dioxide to fuels and value-added chemicals is of significance for the development of carbon recycling technologies. One of the main challenges associated with catalytic CO2 reduction is product selectivity: the formation of carbon monoxide, molecular hydrogen, formate, methanol, and other products occurs with similar thermodynamic driving forces, making it difficult to selectively reduce CO2 to the target product. Significant scientific effort has been aimed at the development of catalysts that can suppress the undesired hydrogen evolution reaction and direct the reaction toward the selective formation of the desired products, which are easy to handle and store. Inspired by natural photosynthesis, where the CO2 reduction is achieved using NADPH cofactors in the Calvin cycle, we explore biomimetic metal-free hydride donors as catalysts for the selective reduction of CO2 to formate. Here, we outline our recent findings on the thermodynamic and kinetic parameters that control the hydride transfer from metal-free hydrides to CO2. By experimentally measuring and theoretically calculating the thermodynamic hydricities of a range of metal-free hydride donors, we derive structural and electronic factors that affect their hydride-donating abilities. Two dominant factors that contribute to the stronger hydride donors are identified to be (i) the stabilization of the positive charge formed upon HT via aromatization or by the presence of electron-donating groups and (ii) the destabilization of hydride donors through the anomeric effect or in the presence of significant structural constrains in the hydride molecule. Hydride donors with appropriate thermodynamic hydricities were reacted with CO2, and the formation of the formate ion (the first reduction step in CO2 reduction to methanol) was confirmed experimentally, providing an important proof of principle that organocatalytic CO2 reduction is feasible. The kinetics of hydride transfer to CO2 were found to be slow, and the sluggish kinetics were assigned in part to the large self-exchange reorganization energy associated with the organic hydrides in the DMSO solvent. Finally, we outline our approaches to the closure of the catalytic cycle via the electrochemical and photochemical regeneration of the hydride (R-H) from the conjugate hydride acceptors (R+). We illustrate how proton-coupled electron transfer can be efficiently utilized not only to lower the electrochemical potential at which the hydride regeneration takes place but also to suppress the unwanted dimerization that neutral radical intermediates tend to undergo. Overall, this account provides a summary of important milestones achieved in organocatalytic CO2 reduction and provides insights into the future research directions needed for the discovery of inexpensive catalysts for carbon recycling.


Assuntos
Biomimética , Dióxido de Carbono , Dióxido de Carbono/química , Catálise , Hidrogênio/química , Oxirredução
2.
Phys Rev Lett ; 131(2): 027001, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505965

RESUMO

The macroscopic coherence in superconductors supports dissipationless supercurrents that could play a central role in emerging quantum technologies. Accomplishing unequal supercurrents in the forward and backward directions would enable unprecedented functionalities. This nonreciprocity of critical supercurrents is called the superconducting (SC) diode effect. We demonstrate the strong SC diode effect in conventional SC thin films, such as niobium and vanadium, employing external magnetic fields as small as 1 Oe. Interfacing the SC layer with a ferromagnetic semiconductor EuS, we further accomplish the nonvolatile SC diode effect reaching a giant efficiency of 65%. By careful control experiments and theoretical modeling, we demonstrate that the critical supercurrent nonreciprocity in SC thin films could be easily accomplished with asymmetrical vortex edge and surface barriers and the universal Meissner screening current governing the critical currents. Our engineering of the SC diode effect in simple systems opens the door for novel technologies while revealing the ubiquity of the Meissner screening effect induced SC diode effect in superconducting films, and it should be eliminated with great care in the search for exotic superconducting states harboring finite-momentum Cooper pairing.

3.
Nucleic Acids Res ; 49(20): 11447-11458, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34718733

RESUMO

DNA-protein interactions play essential roles in all living cells. Understanding of how features embedded in the DNA sequence affect specific interactions with proteins is both challenging and important, since it may contribute to finding the means to regulate metabolic pathways involving DNA-protein interactions. Using a massive experimental benchmark dataset of binding scores for DNA sequences and a machine learning workflow, we describe the binding to DNA of T7 primase, as a model system for specific DNA-protein interactions. Effective binding of T7 primase to its specific DNA recognition sequences triggers the formation of RNA primers that serve as Okazaki fragment start sites during DNA replication.


Assuntos
DNA Primase/química , DNA/química , Motivos de Nucleotídeos , Sítios de Ligação , DNA/metabolismo , DNA Primase/metabolismo , Aprendizado de Máquina , Ligação Proteica
4.
Inorg Chem ; 61(17): 6604-6611, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35446572

RESUMO

Metal-organic cages are a class of supramolecular structures that often require the careful selection of organic linkers and metal nodes. Of this class, few examples of metal-organic cages exist where the nodes are composed of main group metals. Herein, we have prepared an aluminum-based metal-organic cage, H8[Al8(pdc)8(OAc)8O4] (Al-pdc-AA), using inexpensive and commercially available materials. The cage formation was achieved via solvothermal self-assembly of solvated aluminum and pyridine-dicarboxylic linkers in the presence of a capping agent, acetic acid. The obtained supramolecular structure was characterized by single-crystal X-ray diffraction (SCXRD), thermogravimetric analysis, and NMR spectroscopy. Based on crystal structure and computational analyses, the cage has a 3.7 Å diameter electron-rich cavity suitable for the binding of cations such as cesium (ionic radius of 1.69 Å). The host-guest interactions were probed with 1H and 133Cs NMR spectroscopy in DMSO, where at low concentrations, Cs+ binds to Al-pdc-AA in a 1:1 ratio. The binding site was identified from the crystal structure of CsH7[Al8(pdc)8(OAc)8O4] (Cs+⊂Al-pdc-AA), and a binding affinity of ∼106-107 M-1 was determined from NMR titration experiments. The Al-pdc-AA showed improved selectivity for cesium binding over alkali metal cations (Cs+ > Rb+ > K+ ≫ Na+ ∼ Li+). Collectively, the study reports a novel aluminum cage that can serve as a promising host for efficient and selective cesium removal.

5.
Chem Soc Rev ; 50(20): 11530-11558, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34661217

RESUMO

The ubiquity of metal-organic frameworks in recent scientific literature underscores their highly versatile nature. MOFs have been developed for use in a wide array of applications, including: sensors, catalysis, separations, drug delivery, and electrochemical processes. Often overlooked in the discussion of MOF-based materials is the mass transport of guest molecules within the pores and channels. Given the wide distribution of pore sizes, linker functionalization, and crystal sizes, molecular diffusion within MOFs can be highly dependent on the MOF-guest system. In this review, we discuss the major factors that govern the mass transport of molecules through MOFs at both the intracrystalline and intercrystalline scale; provide an overview of the experimental and computational methods used to measure guest diffusivity within MOFs; and highlight the relevance of mass transfer in the applications of MOFs in electrochemical systems, separations, and heterogeneous catalysis.

6.
Sensors (Basel) ; 22(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36080785

RESUMO

The HeartPy Python toolkit for analysis of noisy signals from heart rate measurements is an excellent tool to use in conjunction with novel wearable sensors. Nevertheless, most of the work to date has focused on applying the toolkit to data measured with commercially available sensors. We demonstrate the application of the HeartPy functions to data obtained with a novel graphene-based heartbeat sensor. We produce the sensor by laser-inducing graphene on a flexible polyimide substrate. Both graphene on the polyimide substrate and graphene transferred onto a PDMS substrate show piezoresistive behavior that can be utilized to measure human heartbeat by registering median cubital vein motion during blood pumping. We process electrical resistance data from the graphene sensor using HeartPy and demonstrate extraction of several heartbeat parameters, in agreement with measurements taken with independent reference sensors. We compare the quality of the heartbeat signal from graphene on different substrates, demonstrating that in all cases the device yields results consistent with reference sensors. Our work is a first demonstration of successful application of HeartPy to analysis of data from a sensor in development.


Assuntos
Grafite , Dispositivos Eletrônicos Vestíveis , Frequência Cardíaca , Humanos , Lasers , Movimento (Física)
7.
Inorg Chem ; 60(14): 10439-10450, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34190552

RESUMO

The porphyrinic metal-organic framework, PCN-222, exhibits anisotropic growth behavior to form nanorods and microrods with aspect ratios 3 < x < 94. Control of microrod aspect ratios has been demonstrated through the identification of several factors that dictate crystal growth, particularly the concentrations of a ligand, a modulator, and an exogenous base. An increase in the local concentration of a deprotonated ligand, which is proportional to the nucleation rate, is associated with smaller crystals, while increased modulator concentration leads to longer microrods. Addition of a deprotonating agent not only contributes to higher aspect ratios but also results in an improvement to particle dispersity. Here, we report acid-base co-modulation methods with difluoroacetic acid and triethylamine to effectively tune PCN-222 aspect ratios. A series of mechanisms is identified for the growth of PCN-222: (1) ligand deprotonation, (2) nucleation, (3) oriented attachment, (4) Ostwald ripening, and (5) dissolution-recrystallization. Time trials of co-modulated samples revealed three separate ripening growth events, with each resulting in larger and more monodisperse crystals. With an understanding of these crystal growth factors and mechanisms, the highest aspect ratio, non-templated metal-organic frameworks were synthesized (94 ± 9).

8.
J Am Chem Soc ; 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33215496

RESUMO

Metal-organic frameworks (MOFs) are emerging as a promising platform for solar energy conversion applications. Their potential utilization as efficient chromophores in artificial photosynthesis is closely related to the understanding of light-harvesting and energy transfer processes that occur within these molecular scaffolds. Herein, we present the photophysical investigation of Ru(II), Ir(III), and Os(II) polypyridyl complexes incorporated into the backbone of UiO-67. In this work, we systematically study the effect of spin-orbit coupling on dipole-dipole energy transfer in MOFs using steady-state and time-resolved spectroscopic techniques. The results of our work indicate successful triplet-to-singlet energy transfer and a sizable increase in the transfer kinetics and critical distance, as direct consequences of strong spin-orbit couplings. Remarkably, the reported R0 value for OsDCBPY (R0 = 88 ± 10 Å) represents one of the largest Förster distances observed in an MOF. Collectively, this work contributes to the general knowledge of energy transfer in materials and provides groundwork for efficient utilization in artificial photosynthetic assemblies.

9.
Chemistry ; 26(47): 10849-10860, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32485035

RESUMO

Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium and a causative agent of tuberculosis (TB), a disease that kills more than 1.5 million people worldwide annually. One of the main reasons for this high mortality rate is the evolution of new Mtb strains that are resistant to available antibiotics. Therefore, new therapeutics for TB are in constant demand. Here, we report the development of small-molecule inhibitors that target two DNA replication enzymes of Mtb, namely DnaG primase and DNA gyrase (Gyr), which share a conserved TOPRIM fold near the inhibitors' binding site. The molecules were developed on the basis of previously reported inhibitors for T7 DNA primase that bind near the TOPRIM fold. To improve the physicochemical properties of the molecules as well as their inhibitory effect on primase and gyrase, 49 novel compounds have been synthesized as potential drug candidates in three stages of optimization. The last stage of chemical optimization yielded two novel inhibitors for both Mtb DnaG and Gyr that also showed inhibitory activity toward the fast-growing non-pathogenic model Mycobacterium smegmatis (Msmg).


Assuntos
Antituberculosos/farmacologia , Replicação do DNA/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , DNA Girase/metabolismo , DNA Primase/antagonistas & inibidores , DNA Primase/metabolismo , Humanos , Mycobacterium tuberculosis/genética , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
10.
Sensors (Basel) ; 20(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545279

RESUMO

This paper describes the possibility of using an Electrically Programmable Analog Device (EPAD) as a gamma radiation sensor. Zero-biased EPAD has the lowest fading and the highest sensitivity in the 300 Gy dose range. Dynamic bias of the control gate during irradiation was presented for the first time; this method achieved higher sensitivity compared to static-biased EPADs and better linear dependence. Due to the degradation of the transfer characteristics of EPAD during irradiation, a function of the safe operation area has been found that determines the maximum voltage at the control gate for the desired dose, which will not lead to degradation of the transistor. Using an energy band diagram, it was explained why the zero-biased EPAD has higher sensitivity than the static-biased EPAD.

11.
J Am Chem Soc ; 141(1): 272-280, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30477302

RESUMO

We report a novel metal-free chemical reduction of CO2 by a recyclable benzimidazole-based organo-hydride, whose choice was guided by quantum chemical calculations. Notably, benzimidazole-based hydride donors rival the hydride-donating abilities of noble-metal-based hydrides such as [Ru(tpy)(bpy)H]+ and [Pt(depe)2H]+. Chemical CO2 reduction to the formate anion (HCOO-) was carried out in the absence of biological enzymes, a sacrificial Lewis acid, or a base to activate the substrate or reductant. 13CO2 experiments confirmed the formation of H13COO- by CO2 reduction with the formate product characterized by 1H NMR and 13C NMR spectroscopy and ESI-MS. The highest formate yield of 66% was obtained in the presence of potassium tetrafluoroborate under mild conditions. The likely role of exogenous salt additives in this reaction is to stabilize and shift the equilibrium toward the ionic products. After CO2 reduction, the benzimidazole-based hydride donor was quantitatively oxidized to its aromatic benzimidazolium cation, establishing its recyclability. In addition, we electrochemically reduced the benzimidazolium cation to its organo-hydride form in quantitative yield, demonstrating its potential for electrocatalytic CO2 reduction. These results serve as a proof of concept for the electrocatalytic reduction of CO2 by sustainable, recyclable, and metal-free organo-hydrides.


Assuntos
Benzimidazóis/química , Dióxido de Carbono/química , Formiatos/química , Di-Hidropiridinas/química , Eletroquímica , Modelos Moleculares , Conformação Molecular , Sais/química , Solventes/química
12.
Chem Soc Rev ; 47(8): 2809-2836, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29543931

RESUMO

Metal-free hydrides are of increasing research interest due to their roles in recent scientific advances in catalysis, such as hydrogen activation with frustrated Lewis pairs and electrocatalytic CO2 reduction with pyridinium and other aromatic cations. The structural design of hydrides for specific applications necessitates the correct description of their thermodynamic and kinetic prowess using reliable parameters - thermodynamic hydricity (ΔGH-) and nucleophilicity (N). This review summarizes reported experimental and calculated hydricity values for more than 200 metal-free hydride donors, including carbon-, boron-, nitrogen- and silicon-based hydrides. We describe different experimental and computational methods used to obtain these thermodynamic and kinetic parameters. Furthermore, tabulated data on metal-free hydrides are discussed in terms of structure-property relationships, relevance to catalysis and contemporary limitations for replacing transition-metal hydride catalysts. Finally, several selected applications of metal-free hydrides in catalysis are described, including photosynthetic CO2 reduction and hydrogen activation with frustrated Lewis pairs.

13.
J Am Chem Soc ; 140(13): 4569-4579, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29547268

RESUMO

Thermodynamic hydricities (Δ GH-) in acetonitrile and dimethyl sulfoxide have been calculated and experimentally measured for several metal-free hydride donors: NADH analogs (BNAH, CN-BNAH, Me-MNAH, HEH), methylene tetrahydromethanopterin analogs (BIMH, CAFH), acridine derivatives (Ph-AcrH, Me2N-AcrH, T-AcrH, 4OH, 2OH, 3NH), and a triarylmethane derivative (6OH). The calculated hydricity values, obtained using density functional theory, showed a reasonably good match (within 3 kcal/mol) with the experimental values, obtained using "potential p Ka" and "hydride-transfer" methods. The hydride donor abilities of model compounds were in the 48.7-85.8 kcal/mol (acetonitrile) and 46.9-84.1 kcal/mol (DMSO) range, making them comparable to previously studied first-row transition metal hydride complexes. To evaluate the relevance of entropic contribution to the overall hydricity, Gibbs free energy differences (Δ GH-) obtained in this work were compared with the enthalpy (Δ HH-) values obtained by others. The results indicate that, even though Δ HH- values exhibit the same trends as Δ GH-, the differences between room-temperature Δ GH- and Δ HH- values range from 3 to 9 kcal/mol. This study also reports a new metal-free hydride donor, namely, an acridine-based compound 3NH, whose hydricity exceeds that of NaBH4. Collectively, this work gives a perspective of use metal-free hydride catalysts in fuel-forming and other reduction processes.

14.
Annu Rev Phys Chem ; 68: 305-331, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28301760

RESUMO

Metal-free motifs, such as graphitic carbon nitride, conjugated polymers, and doped nanostructures, are emerging as a new class of Earth-abundant materials for solar fuel devices. Although these metal-free structures show great potential, detailed mechanistic understanding of their performance remains limited. Here, we review important experimental and theoretical findings relevant to the role of metal-free motifs as either photoelectrodes or electrocatalysts. First, the light-harvesting characteristics of metal-free photoelectrodes (band energetics, exciton binding energies, charge carrier mobilities and lifetimes) are discussed and contrasted with those in traditional inorganic semiconductors (such as Si). Second, the mechanistic insights into the electrocatalytic oxygen reduction and evolution reactions, hydrogen evolution reaction, and carbon dioxide reduction reaction by metal-free motifs are summarized, including experimental surface-sensitive spectroscopy findings, studies on small molecular models, and computational modeling of these chemical transformations.

15.
Biochem J ; 474(15): 2601-2617, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28655719

RESUMO

Enhanced activation of the signaling pathways that mediate the differentiation of mononuclear monocytes into osteoclasts is an underlying cause of several bone diseases and bone metastasis. In particular, dysregulation and overexpression of macrophage colony-stimulating factor (M-CSF) and its c-FMS tyrosine kinase receptor, proteins that are essential for osteoclast differentiation, are known to promote bone metastasis and osteoporosis, making both the ligand and its receptor attractive targets for therapeutic intervention. With this aim in mind, our starting point was the previously held concept that the potential of the M-CSFC31S mutant as a therapeutic is derived from its inability to dimerize and hence to act as an agonist. The current study showed, however, that dimerization is not abolished in M-CSFC31S and that the protein retains agonistic activity toward osteoclasts. To design an M-CSF mutant with diminished dimerization capabilities, we solved the crystal structure of the M-CSFC31S dimer complex and used structure-based energy calculations to identify the residues responsible for its dimeric form. We then used that analysis to develop M-CSFC31S,M27R, a ligand-based, high-affinity antagonist for c-FMS that retained its binding ability but prevented the ligand dimerization that leads to receptor dimerization and activation. The monomeric properties of M-CSFC31S,M27R were validated using dynamic light scattering and small-angle X-ray scattering analyses. It was shown that this mutant is a functional inhibitor of M-CSF-dependent c-FMS activation and osteoclast differentiation in vitro Our study, therefore, provided insights into the sequence-structure-function relationships of the M-CSF/c-FMS interaction and of ligand/receptor tyrosine kinase interactions in general.


Assuntos
Substituição de Aminoácidos , Diferenciação Celular/genética , Fator Estimulador de Colônias de Macrófagos , Mutação de Sentido Incorreto , Multimerização Proteica/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Animais , Humanos , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos , Osteoclastos/citologia , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Relação Estrutura-Atividade
16.
Phys Rev Lett ; 119(11): 117001, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28949202

RESUMO

We calculate the effect of impurities on the superconducting phase diagram of transition metal dichalcogenide monolayers in the presence of an in-plane magnetic field. Because of strong intrinsic spin-orbit coupling, the upper critical field greatly surpasses the Pauli limit at low temperatures. We find that it is insensitive to intravalley scattering and, ultimately, limited by intervalley scattering.

17.
J Phys Chem A ; 121(2): 448-457, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-27991787

RESUMO

The excited-state heterolysis of acridinol-based derivatives leads to the release of the OH- ion and the formation of the corresponding acridinium cations. To evaluate the parameters that control the reaction barriers, the kinetics of excited-state OH- release from a series of acridinol photobases were studied using transient absorption spectroscopy. The rate constants were obtained in three solvents (methanol, butanol, and isobutanol), and the data were modeled using Marcus theory. The intrinsic reorganization energies obtained from these fits were found to correlate well with the solvent reorganization energies calculated using dielectric continuum model, suggesting that the excited-state OH- release occurs along the solvent reaction coordinate. Furthermore, the ability of acridinol photobases to photoinitiate chemical reactions was demonstrated using the Michael reaction between dimethylmalonate and nitrostyrene.

18.
Biomarkers ; 21(2): 186-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26754535

RESUMO

Gender-related differences in the association between polymorphism of xenobiotic-metabolising enzymes or non-genetic biomarkers and susceptibility to oxidative stress was assessed in healthy middle-aged Serbian adults, by urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG/creatinine) and total antioxidant status in serum (TAOS). Females were more susceptible to oxidative stress. In both genders, positive predictor of the antioxidative protection was serum triglyceride, while BMI <25 kg/m(2) was associated with oxidative stress. Susceptibility to oxidative stress in males was associated with GSTT1*null allele and increased serum iron, but in females, it was decreased serum bilirubin. Early identification of the risk factors could be important in the prevention of oxidative stress-related diseases.


Assuntos
Biomarcadores/análise , Predisposição Genética para Doença/genética , Estresse Oxidativo , Polimorfismo Genético , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Alelos , Antioxidantes/análise , Biomarcadores/sangue , Biomarcadores/urina , Creatinina/urina , Citocromo P-450 CYP1A1/genética , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Epóxido Hidrolases/genética , Feminino , Frequência do Gene , Genótipo , Glutationa S-Transferase pi/genética , Glutationa Transferase/genética , Humanos , Ferro/sangue , Masculino , Pessoa de Meia-Idade , Análise de Regressão , Sérvia , Fatores Sexuais
19.
ACS Appl Mater Interfaces ; 16(1): 435-443, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147639

RESUMO

Discovery of stable and efficient electrolytes that are compatible with magnesium metal anodes and high-voltage cathodes is crucial to enabling energy storage technologies that can move beyond existing Li-ion systems. Many promising electrolytes for magnesium anodes have been proposed with chloride-based systems at the forefront; however, Cl-containing electrolytes lack the oxidative stability required by high-voltage cathodes. In this work, we report magnesium trifluoromethanesulfonate (triflate) as a viable coanion for Cl-free, mixed-anion magnesium electrolytes. The addition of triflate to electrolytes containing bis(trifluoromethane sulfonyl) imide (TFSI-) anions yields significantly improved Coulombic efficiency, up to a 100 mV decrease in the plating/stripping overpotential, improved tolerance to trace H2O, and improved oxidative stability (0.35 V improvement compared to that of hybrid TFSI-Cl electrolytes). Based on 19F nuclear magnetic resonance and Raman spectroscopy measurements, we propose that these improvements in performance are driven by the formation of mixed-anion contact ion pairs, where both triflate and TFSI- are coordinated to Mg2+ in the electrolyte bulk. The formation of this mixed-anion magnesium complex is further predicted by the density functional theory to be thermodynamically driven. Collectively, this work outlines the guiding principles for the improved design of next-generation electrolytes for magnesium batteries.

20.
J Phys Chem Lett ; 15(19): 5096-5102, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38709010

RESUMO

Multivalent-ion battery technologies are increasingly attractive options for meeting diverse energy storage needs. Calcium ion batteries (CIB) are particularly appealing candidates for their earthly abundance, high theoretical volumetric energy density, and relative safety advantages. At present, only a few Ca-ion electrolyte systems are reported to reversibly plate at room temperature: for example, aluminates and borates, including Ca[TPFA]2, where [TPFA]- = [Al(OC(CF3)3)4]- and Ca[B(hfip)4]2, [B(hfip)4]2- = [B(OCH(CF3)2)4]-. Analyzing the structure of these salts reveals a common theme: the prevalent use of a weakly coordinating anion (WCA) consisting of a tetracoordinate aluminum/boron (Al/B) center with fluorinated alkoxides. Leveraging the concept of theory-aided design, we report an innovative, one-pot synthesis of two new calcium-ion electrolyte salts (Ca[Al(tftb)4]2, Ca[Al(hftb)4]2) and two reported salts (Ca[Al(hfip)4]2 and Ca[TPFA]2) where hfip = (-OCH(CF3)2), tftb = (-OC(CF3)(Me)2), hftb = (-OC(CF3)2(Me)), [TPFA]- = [Al(OC(CF3)3)4]-. We also reveal the dependence of Coulombic efficiency on their inherent propensity for cation-anion coordination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA