Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Diabetologia ; 53(4): 757-67, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20076942

RESUMO

AIMS/HYPOTHESIS: Insulin resistance (IR) is associated with obesity, but can also develop in individuals with normal body weight. We employed comprehensive profiling methods to identify metabolic events associated with IR, while controlling for obesity. METHODS: We selected 263 non-obese (BMI approximately 24 kg/m2) Asian-Indian and Chinese men from a large cross-sectional study carried out in Singapore. Individuals taking medication for diabetes or hyperlipidaemia were excluded. Participants were separated into lower and upper tertiles of IR based on HOMA indices of < or =1.06 or > or =1.93, respectively. MS-based metabolic profiling of acylcarnitines, amino acids and organic acids was combined with hormonal and cytokine profiling in all participants. RESULTS: After controlling for BMI, commonly accepted risk factors for IR, including circulating fatty acids and inflammatory cytokines, did not discriminate the upper and lower quartiles of insulin sensitivity in either Asian- Indian or Chinese men. Instead, IR was correlated with increased levels of alanine, proline, valine, leucine/isoleucine, phenylalanine, tyrosine, glutamate/glutamine and ornithine, and a cluster of branched-chain and related amino acids identified by principal components analysis. These changes were not due to increased protein intake by individuals in the upper quartile of IR. Increased abdominal adiposity and leptin, and decreased adiponectin and IGF-binding protein 1 were also correlated with IR. CONCLUSIONS/INTERPRETATION: These findings demonstrate that perturbations in amino acid homeostasis, but not inflammatory markers or NEFAs, are associated with IR in individuals of relatively low body mass.


Assuntos
Índice de Massa Corporal , Resistência à Insulina/fisiologia , Adiponectina/sangue , Adulto , Aminoácidos/sangue , Aminoácidos/metabolismo , Povo Asiático , Glicemia/metabolismo , Colesterol/sangue , Estudos Transversais , Demografia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/sangue , Humanos , Índia , Insulina/sangue , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/sangue , Interleucinas/sangue , Estilo de Vida , Lipídeos/sangue , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Seleção de Pacientes , Grupos Raciais , Fatores de Risco , Singapura/epidemiologia , População Branca
2.
Mitochondrion ; 20: 95-102, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25530493

RESUMO

Single-gene mutations that disrupt mitochondrial respiratory chain function in Caenorhabditis elegans change patterns of protein expression and metabolites. Our goal was to develop useful molecular fingerprints employing adaptable techniques to recognize mitochondrial defects in the electron transport chain. We analyzed mutations affecting complex I, complex II, or ubiquinone synthesis and discovered overarching patterns in the response of C. elegans to mitochondrial dysfunction across all of the mutations studied. These patterns are in KEGG pathways conserved from C. elegans to mammals, verifying that the nematode can serve as a model for mammalian disease. In addition, specific differences exist between mutants that may be useful in diagnosing specific mitochondrial diseases in patients.


Assuntos
Caenorhabditis elegans/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Metaboloma , Mitocôndrias/enzimologia , Mutação , Proteoma/análise , Animais , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/genética , Proteínas Mitocondriais/genética
3.
Oncogene ; 34(25): 3296-304, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25151967

RESUMO

Isoprenylcysteine carboxylmethyltransferase (Icmt) catalyzes the last of the three-step posttranslational protein prenylation process for the so-called CaaX proteins, which includes many signaling proteins, such as most small GTPases. Despite extensive studies on Icmt and its regulation of cell functions, the mechanisms of much of the impact of Icmt on cellular functions remain unclear. Our recent studies demonstrated that suppression of Icmt results in induction of autophagy, inhibition of cell growth and inhibition of proliferation in various cancer cell types, prompting this investigation of potential metabolic regulation by Icmt. We report here the findings that Icmt inhibition reduces the function of mitochondrial oxidative phosphorylation in multiple cancer cell lines. In-depth oximetry analysis demonstrated that functions of mitochondrial complex I, II and III are subject to Icmt regulation. Consistently, Icmt inhibition decreased cellular ATP and depleted critical tricarboxylic acid cycle metabolites, leading to suppression of cell anabolism and growth, and marked autophagy. Several different approaches demonstrated that the impact of Icmt inhibition on cell proliferation and viability was largely mediated by its effect on mitochondrial respiration. This previously unappreciated function of Icmt, which can be therapeutically exploited, likely has a significant role in the impact of Icmt on tumorigenic processes.


Assuntos
Mitocôndrias/metabolismo , Proteínas Metiltransferases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Indóis/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Proteínas Metiltransferases/antagonistas & inibidores
4.
Oncogene ; 33(45): 5251-61, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24186207

RESUMO

Prostate cancer is the most commonly diagnosed malignancy among men in industrialized countries, accounting for the second leading cause of cancer-related deaths. Although we now know that the androgen receptor (AR) is important for progression to the deadly advanced stages of the disease, it is poorly understood what AR-regulated processes drive this pathology. Here we demonstrate that AR regulates prostate cancer cell growth via the metabolic sensor 5'-AMP-activated protein kinase (AMPK), a kinase that classically regulates cellular energy homeostasis. In patients, activation of AMPK correlated with prostate cancer progression. Using a combination of radiolabeled assays and emerging metabolomic approaches, we also show that prostate cancer cells respond to androgen treatment by increasing not only rates of glycolysis, as is commonly seen in many cancers, but also glucose and fatty acid oxidation. Importantly, this effect was dependent on androgen-mediated AMPK activity. Our results further indicate that the AMPK-mediated metabolic changes increased intracellular ATP levels and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)-mediated mitochondrial biogenesis, affording distinct growth advantages to the prostate cancer cells. Correspondingly, we used outlier analysis to determine that PGC-1α is overexpressed in a subpopulation of clinical cancer samples. This was in contrast to what was observed in immortalized benign human prostate cells and a testosterone-induced rat model of benign prostatic hyperplasia. Taken together, our findings converge to demonstrate that androgens can co-opt the AMPK-PGC-1α signaling cascade, a known homeostatic mechanism, to increase prostate cancer cell growth. The current study points to the potential utility of developing metabolic-targeted therapies directed toward the AMPK-PGC-1α signaling axis for the treatment of prostate cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Androgênios/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Glicólise/efeitos dos fármacos , Humanos , Estimativa de Kaplan-Meier , Masculino , Metribolona/farmacologia , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Fosforilação Oxidativa/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Interferência de RNA , Ratos Wistar , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética
5.
Oncogene ; 30(16): 1855-67, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21151168

RESUMO

Hematopoietic cells normally require cell extrinsic signals to maintain metabolism and survival. In contrast, cancer cells can express constitutively active oncogenic kinases such as BCR-Abl that promote these processes independent of extrinsic growth factors. When cells receive insufficient growth signals or when oncogenic kinases are inhibited, glucose metabolism decreases and the self-digestive process of autophagy is elevated to degrade bulk cytoplasm and organelles. Although autophagy has been proposed to provide a cell-intrinsic nutrient supply for mitochondrial oxidative metabolism and to maintain cellular homeostasis through degradation of damaged organelles or protein aggregates, its acute role in growth factor deprivation or inhibition of oncogenic kinases remains poorly understood. We therefore developed a growth factor-dependent hematopoietic cell culture model in which autophagy can be acutely disrupted through conditional Cre-mediated excision of the autophagy-essential gene Atg3. Treated cells rapidly lost their ability to perform autophagy and underwent cell cycle arrest and apoptosis. Although Atg3 was essential for optimal upregulation of mitochondrial oxidative pathways in growth factor withdrawal, this metabolic contribution of autophagy did not appear critical for cell survival, as provision of exogenous pyruvate or lipids could not completely rescue Atg3 deficiency. Instead, autophagy suppressed a stress response that otherwise led to p53 phosphorylation and upregulation of p21 and the pro-apoptotic Bcl-2 family protein Puma. Importantly, BCR-Abl-expressing cells had low basal levels of autophagy, but were highly dependent on this process, and rapidly underwent apoptosis upon disruption of autophagy through Atg3 deletion or treatment with chemical autophagy inhibitors. This dependence on autophagy extended in vivo, as Atg3 deletion also prevented BCR-Abl-mediated leukemogenesis in a cell transfer model. Together these data demonstrate a critical role for autophagy to mitigate cell stress, and that cells expressing the oncogenic kinase BCR-Abl appear particularly dependent on autophagy for cell survival and leukemogenesis.


Assuntos
Autofagia , Genes abl , Leucemia/genética , Estresse Oxidativo , Humanos
6.
J Clin Endocrinol Metab ; 96(3): 775-81, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21190973

RESUMO

CONTEXT: In lean individuals, increasing dietary lipid can elicit an increase in whole body lipid oxidation; however, with obesity the capacity to respond to changes in substrate availability appears to be compromised. OBJECTIVE: To determine whether the responses of genes regulating lipid oxidation in skeletal muscle differed between lean and insulin resistant obese humans upon exposure to a high-fat diet (HFD). DESIGN AND SETTING: A 5-d prospective study conducted in the research unit of an academic center. PARTICIPANTS: Healthy, lean (n = 12; body mass index = 22.1 ± 0.6 kg/m(2)), and obese (n=10; body mass index = 39.6 ± 1.7 kg/m(2)) males and females, between ages 18 and 30. INTERVENTION: Participants were studied before and after a 5-d HFD (65% fat). MAIN OUTCOME MEASURES: Skeletal muscle biopsies (vastus lateralis) were obtained in the fasted and fed states before and after the HFD and mRNA content for genes involved with lipid oxidation determined. Skeletal muscle acylcarnitine content was determined in the fed states before and after the HFD. RESULTS: Peroxisome proliferator activated receptor (PPAR) α mRNA content increased in lean, but not obese, subjects after a single high-fat meal. From Pre- to Post-HFD, mRNA content exhibited a body size × HFD interaction, where the lean individuals increased while the obese individuals decreased mRNA content for pyruvate dehydrogenase kinase 4, uncoupling protein 3, PPARα, and PPARγ coactivator-1α (P ≤ 0.05). In the obese subjects medium-chain acylcarnitine species tended to accumulate, whereas no change or a reduction was evident in the lean individuals. CONCLUSIONS: These findings indicate a differential response to a lipid stimulus in the skeletal muscle of lean and insulin resistant obese humans.


Assuntos
Gorduras na Dieta/farmacologia , Metabolismo dos Lipídeos/genética , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Adolescente , Adulto , Glicemia/metabolismo , Índice de Massa Corporal , Carnitina/análogos & derivados , Carnitina/metabolismo , Dieta , Ácidos Graxos não Esterificados/sangue , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Insulina/sangue , Insulina/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/química , Oxirredução , PPAR alfa/biossíntese , PPAR alfa/genética , Piruvato Desidrogenase (Lipoamida)/genética , Piruvato Desidrogenase (Lipoamida)/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Espectrometria de Massas por Ionização por Electrospray , Proteína Desacopladora 3 , Adulto Jovem
7.
Diabetologia ; 50(4): 824-32, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17310372

RESUMO

AIMS/HYPOTHESIS: This study examined the efficacy of supplemental L: -carnitine as an adjunctive diabetes therapy in mouse models of metabolic disease. We hypothesised that carnitine would facilitate fatty acid export from tissues in the form of acyl-carnitines, thereby alleviating lipid-induced insulin resistance. MATERIALS AND METHODS: Obese mice with genetic or diet-induced forms of insulin resistance were fed rodent chow +/- 0.5% L: -carnitine for a period of 1-8 weeks. Metabolic outcomes included insulin tolerance tests, indirect calorimetry and mass spectrometry-based profiling of acyl-carnitine esters in tissues and plasma. RESULTS: Carnitine supplementation improved insulin-stimulated glucose disposal in genetically diabetic mice and wild-type mice fed a high-fat diet, without altering body weight or food intake. In severely diabetic mice, carnitine supplementation increased average daily respiratory exchange ratio from 0.886 +/- 0.01 to 0.914 +/- 0.01 (p < 0.01), reflecting a marked increase in systemic carbohydrate oxidation. Similarly, under insulin-stimulated conditions, carbohydrate oxidation was higher and total energy expenditure increased from 172 +/- 10 to 210 +/- 9 kJ kg fat-free mass(-1) h(-1) in the carnitine-supplemented compared with control animals. These metabolic improvements corresponded with a 2.3-fold rise in circulating levels of acetyl-carnitine, which accounts for 86 and 88% of the total acyl-carnitine pool in plasma and skeletal muscle, respectively. Carnitine supplementation also increased several medium- and long-chain acyl-carnitine species in both plasma and tissues. CONCLUSIONS/INTERPRETATION: These findings suggest that carnitine supplementation relieves lipid overload and glucose intolerance in obese rodents by enhancing mitochondrial efflux of excess acyl groups from insulin-responsive tissues. Carefully controlled clinical trials should be considered.


Assuntos
Carnitina/uso terapêutico , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Animais , Calorimetria/métodos , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina/farmacologia , Ácidos Graxos/metabolismo , Teste de Tolerância a Glucose , Glicerol/metabolismo , Resistência à Insulina , Masculino , Espectrometria de Massas , Camundongos , Camundongos Obesos , Piruvato Desidrogenase (Lipoamida)/metabolismo , Complexo Vitamínico B/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA