RESUMO
During biological invasions, invasive populations can suffer losses of genetic diversity that are predicted to negatively impact their fitness/performance. Despite examples of invasive populations harboring lower diversity than conspecific populations in their native range, few studies have linked this lower diversity to a decrease in fitness. Using genome sequences, we show that invasive populations of the African fig fly, Zaprionus indianus, have less genetic diversity than conspecific populations in their native range and that diversity is proportionally lower in regions of the genome experiencing low recombination rates. This result suggests that selection may have played a role in lowering diversity in the invasive populations. We next use interspecific comparisons to show that genetic diversity remains relatively high in invasive populations of Z. indianus when compared with other closely related species. By comparing genetic diversity in orthologous gene regions, we also show that the genome-wide landscape of genetic diversity differs between invasive and native populations of Z. indianus indicating that invasion not only affects amounts of genetic diversity but also how that diversity is distributed across the genome. Finally, we use parameter estimates from thermal performance curves for 13 species of Zaprionus to show that Z. indianus has the broadest thermal niche of measured species, and that performance does not differ between invasive and native populations. These results illustrate how aspects of genetic diversity in invasive species can be decoupled from measures of fitness, and that a broad thermal niche may have helped facilitate Z. indianus's range expansion.
Assuntos
Drosophilidae/genética , Variação Genética , Espécies Introduzidas , Animais , Genoma de Inseto , Temperatura , Sequenciamento Completo do GenomaRESUMO
Predators can influence a variety of prey traits, including behavior. Traits such as boldness, activity rate, and tendency to explore can all be shaped by predation risk. Our study examines the effects of predation on these behaviors by considering a natural system in which two sister species of livebearing fishes, Brachyrhaphis roseni and B. terrabensis, experience divergent predation environments. In February of 2013, we collected fish in the Río Chiriquí Nuevo drainage, Chiriquí, Panama, and conducted behavioral assays. Using open-field behavioral assays, we evaluated both juveniles and adults, and males and females, to determine if there were differences in behavior between ontogenetic stages or between sexes. We assessed boldness as 'time to emerge' from a shelter into a novel environment, and subsequently measured activity and exploration within that novel environment. We predicted that B. roseni (a species that co-occurs with predators) would be more bold, more active, and more prone to explore, than B. terrabensis (a species that does not co-occur with predators). In total, we tested 17 juveniles, 21 adult males, and 20 adult females of B. roseni, and 19 juveniles, 19 adult males, and 18 adult females of B. terrabensis. We collected all animals from streams in Chiriquí, Panama in February 2013, and tested them following a short acclimation period to laboratory conditions. As predicted, we found that predation environment was associated with several differences in behavior. Both adult and juvenile B. roseni were more active and more prone to explore than B. terrabensis. However, we found no differences in boldness in either adults or juveniles. We also found a significant interaction between 'sex' and 'species' as predictors of boldness and exploration, indicating that predation environment can affect behaviors of males and females differently in each species. Our work demonstrates the importance of considering sex and life history stage when evaluating the evolution of behavior.
Assuntos
Ecossistema , Poecilia/fisiologia , Comportamento Predatório/fisiologia , Fatores Etários , Análise de Variância , Animais , Feminino , Masculino , Valores de Referência , Fatores Sexuais , Especificidade da Espécie , Fatores de TempoRESUMO
How selection acts to drive trait evolution at different stages of divergence is of fundamental importance in our understanding of the origins of biodiversity. Yet, most studies have focused on a single point along an evolutionary trajectory. Here, we provide a case study evaluating the strength of divergent selection acting on life-history traits at early-versus-late stages of divergence in Brachyrhaphis fishes. We find that the difference in selection is stronger in the early-diverged population than the late-diverged population, and that trait differences acquired early are maintained over time.
Assuntos
Evolução Biológica , Ciprinodontiformes/fisiologia , Seleção Genética , Animais , Ciprinodontiformes/genética , Feminino , Fenótipo , FilogeniaRESUMO
The livebearing fish genus Brachyrhaphis (Poeciliidae) has become an increasingly important model in evolution and ecology research, yet the phylogeny of this group is not well understood, nor has it been examined thoroughly using modern phylogenetic methods. Here, we present the first comprehensive phylogenetic analysis of Brachyrhaphis by using four molecular markers (3mtDNA, 1nucDNA) to infer relationships among species in this genus. We tested the validity of this genus as a monophyletic group using extensive outgroup sampling based on recent phylogenetic hypotheses of Poeciliidae. We also tested the validity of recently described species of Brachyrhaphis that are part of the B. episcopi complex in Panama. Finally, we examined the impact of historical events on diversification of Brachyrhaphis, and made predictions regarding the role of different ecological environments on evolutionary diversification where known historical events apparently fail to explain speciation. Based on our results, we reject the monophyly of Brachyrhaphis, and question the validity of two recently described species (B. hessfeldi and B. roswithae). Historical biogeography of Brachyrhaphis generally agrees with patterns found in other freshwater taxa in Lower Central America, which show that geological barriers frequently predict speciation. Specifically, we find evidence in support of an 'island' model of Lower Central American formation, which posits that the nascent isthmus was partitioned by several marine connections before linking North and South America. In some cases where historic events (e.g., vicariance) fail to explain allopatric species breaks in Brachyrhaphis, ecological processes (e.g., divergent predation environments) offer additional insight into our understanding of phylogenetic diversification in this group.
Assuntos
Peixes/classificação , Peixes/genética , Filogenia , Animais , América Central , Fenômenos Ecológicos e Ambientais , Marcadores Genéticos/genética , Ilhas , Filogeografia , Reprodutibilidade dos TestesRESUMO
Scientific writing can prove challenging, particularly for those who are non-native English speakers writing in English. Here, we explore the potential of advanced artificial intelligence (AI) tools, guided by principles of second-language acquisition, to help scientists improve their scientific writing skills in numerous contexts.
Assuntos
Inteligência Artificial , Redação , IdiomaRESUMO
Animals eavesdrop on signals and cues generated by prey, predators, hosts, parasites, competing species, and conspecifics, and the conspicuousness of sexual signals makes them particularly susceptible. Yet, when sexual signals evolve, most attention is paid to impacts on intended receivers (potential mates) rather than fitness consequences for eavesdroppers. Using the rapidly evolving interaction between the Pacific field cricket, Teleogryllus oceanicus, and the parasitoid fly, Ormia ochracea, we asked how parasitoids initially respond to novel changes in host signals. We recently discovered a novel sexual signal, purring song, in Hawaiian populations of T. oceanicus that appears to have evolved because it protects the cricket from the parasitoid while still allowing males to attract female crickets for mating. In Hawaii, there are no known alternative hosts for the parasitoid, so we would expect flies to be under selection to detect and attend to the new purring song. We used complementary field and laboratory phonotaxis experiments to test fly responses to purring songs that varied in many dimensions, as well as to ancestral song. We found that flies strongly prefer ancestral song over purring songs in both the field and the lab, but we caught more flies to purring songs in the field than reported in previous work, indicating that flies may be exerting some selective pressure on the novel song. When played at realistic amplitudes, we found no preferences-flies responded equally to all purrs that varied in frequency, broadbandedness, and temporal measures. However, our lab experiment did reveal the first evidence of preference for purring song amplitude, as flies were more attracted to purrs played at amplitudes greater than naturally occurring purring songs. As purring becomes more common throughout Hawaii, flies that can use purring song to locate hosts should be favored by selection and increase in frequency.
RESUMO
Did the remarkable helicopter damselflies (family Pseudostigmatidae) evolve their unique feeding and oviposition behaviors independently on two continents? In this issue, Toussaint et al. use molecular phylogenetic approaches to provide convincing evidence that these "forest giants" are in fact an example of ecomorphological convergence across the Atlantic Ocean.
Assuntos
Odonatos , Aeronaves , Animais , Oceano Atlântico , Feminino , Florestas , FilogeniaRESUMO
Rapid technical advances in the field of computer animation (CA) and virtual reality (VR) have opened new avenues in animal behavior research. Animated stimuli are powerful tools as they offer standardization, repeatability, and complete control over the stimulus presented, thereby "reducing" and "replacing" the animals used, and "refining" the experimental design in line with the 3Rs. However, appropriate use of these technologies raises conceptual and technical questions. In this review, we offer guidelines for common technical and conceptual considerations related to the use of animated stimuli in animal behavior research. Following the steps required to create an animated stimulus, we discuss (I) the creation, (II) the presentation, and (III) the validation of CAs and VRs. Although our review is geared toward computer-graphically designed stimuli, considerations on presentation and validation also apply to video playbacks. CA and VR allow both new behavioral questions to be addressed and existing questions to be addressed in new ways, thus we expect a rich future for these methods in both ultimate and proximate studies of animal behavior.
RESUMO
Natural selection's role in speciation has been of fundamental importance since Darwin first outlined his theory. Recently, work has focused on understanding how selection drives trait divergence, and subsequently reproductive isolation. "Immigrant inviability," a barrier that arises from selection against immigrants in their nonnative environment, appears to be of particular importance. Although immigrant inviability is likely ubiquitous, we know relatively little about how selection acts on traits to drive immigrant inviability, and how important immigrant inviability is at early-versus-late stages of divergence. We present a study evaluating the role of predation in the evolution of immigrant inviability in recently diverged population pairs and a well-established species pair of Brachyrhaphis fishes. We evaluate performance in a high-predation environment by assessing survival in the presence of a predator, and swimming endurance in a low-predation environment. We find strong signatures of local adaptation and immigrant inviability of roughly the same magnitude both early and late in divergence. We find remarkably conserved selection for burst-speed swimming (important in predator evasion), and selection for increased size in low-predation environments. Our results highlight the consistency with which selection acts during speciation, and suggest that similar factors might promote initial population differentiation and maintain differentiation at late stages of divergence.
Assuntos
Ciprinodontiformes/classificação , Ciprinodontiformes/fisiologia , Migração Animal , Animais , Evolução Biológica , Ciprinodontiformes/genética , Feminino , Masculino , Resistência Física , Seleção Genética , NataçãoRESUMO
Although interest in the ecological and evolutionary implications of animal personality continues to grow, the role that personality plays in speciation has received only modest attention. Here we explore links between personality and speciation, and offer a framework for addressing some of this field's most interesting questions.
Assuntos
Especiação Genética , Personalidade , Isolamento Reprodutivo , AnimaisRESUMO
The effect of divergent natural selection on the evolution of behavioral traits has long been a focus of behavioral ecologists. Predation, due to its ubiquity in nature and strength as a selective agent, has been considered an important environmental driver of behavior. Predation is often confounded with other environmental factors that could also play a role in behavioral evolution. For example, environments that contain predators are often more ecologically complex and "risky" (i.e., exposed and dangerous). Previous work shows that individuals from risky environments are often more bold, active, and explorative than those from low-risk environments. To date, most comparative studies of environmentally driven behavioral divergence are limited to comparisons among populations within species that occur in divergent selective environments but neglect comparisons between species following speciation. This limits our understanding of how behavior evolves post-speciation. The Central American live-bearing fish genus Brachyrhaphis provides an ideal system for examining the relationship between selective environments and behavior, within and between species. Here, we test for differences in boldness between sister species B. roseni and B. terrabensis that occur in streams with and without piscivorous predators, respectively. We found that species do differ in boldness, with species that occur with predators being bolder than those that do not. Within each species, we found that sexes differed in boldness, with males being bolder than females. We also tested for a relationship between size (a surrogate for metabolic rate) and boldness, but found no size effects. Therefore, sex, not size, affects boldness. These results are consistent with the hypothesis that complex and risky environments favor individuals with more bold behavioral traits, but they are not consistent with the hypothesis that size (and therefore metabolic rate) drives divergence in boldness. Finally, our results provide evidence that behavioral trait divergence continues even after speciation is complete.
RESUMO
Natural selection often results in profound differences in body shape among populations from divergent selective environments. Predation is a well-studied driver of divergence, with predators having a strong effect on the evolution of prey body shape, especially for traits related to escape behavior. Comparative studies, both at the population level and between species, show that the presence or absence of predators can alter prey morphology. Although this pattern is well documented in various species or population pairs, few studies have tested for similar patterns of body shape evolution at multiple stages of divergence within a taxonomic group. Here, we examine morphological divergence associated with predation environment in the livebearing fish genus Brachyrhaphis. We compare differences in body shape between populations of B. rhabdophora from different predation environments to differences in body shape between B. roseni and B. terrabensis (sister species) from predator and predator free habitats, respectively. We found that in each lineage, shape differed between predation environments, consistent with the hypothesis that locomotor function is optimized for either steady swimming (predator free) or escape behavior (predator). Although differences in body shape were greatest between B. roseni and B. terrabensis, we found that much of the total morphological diversification between these species had already been achieved within B. rhabdophora (29% in females and 47% in males). Interestingly, at both levels of divergence we found that early in ontogenetic development, females differed in shape between predation environments; however, as females matured, their body shapes converged on a similar phenotype, likely due to the constraints of pregnancy. Finally, we found that body shape varies with body size in a similar way, regardless of predation environment, in each lineage. Our findings are important because they provide evidence that the same source of selection can drive similar phenotypic divergence independently at multiple divergence levels.
Assuntos
Ciprinodontiformes/anatomia & histologia , Meio Ambiente , Comportamento Predatório , Animais , Ciprinodontiformes/fisiologia , Evolução Molecular , Feminino , Masculino , Dados de Sequência Molecular , Filogenia , Gravidez , ReproduçãoRESUMO
Abstract:Predators can influence a variety of prey traits, including behavior. Traits such as boldness, activity rate, and tendency to explore can all be shaped by predation risk. Our study examines the effects of predation on these behaviors by considering a natural system in which two sister species of livebearing fishes, Brachyrhaphis roseni and B. terrabensis, experience divergent predation environments. In February of 2013, we collected fish in the Río Chiriquí Nuevo drainage, Chiriquí, Panama, and conducted behavioral assays. Using open-field behavioral assays, we evaluated both juveniles and adults, and males and females, to determine if there were differences in behavior between ontogenetic stages or between sexes. We assessed boldness as 'time to emerge' from a shelter into a novel environment, and subsequently measured activity and exploration within that novel environment. We predicted that B. roseni (a species that co-occurs with predators) would be more bold, more active, and more prone to explore, than B. terrabensis (a species that does not co-occur with predators). In total, we tested 17 juveniles, 21 adult males, and 20 adult females of B. roseni, and 19 juveniles, 19 adult males, and 18 adult females of B. terrabensis. We collected all animals from streams in Chiriquí, Panama in February 2013, and tested them following a short acclimation period to laboratory conditions. As predicted, we found that predation environment was associated with several differences in behavior. Both adult and juvenile B. roseni were more active and more prone to explore than B. terrabensis. However, we found no differences in boldness in either adults or juveniles. We also found a significant interaction between 'sex' and 'species' as predictors of boldness and exploration, indicating that predation environment can affect behaviors of males and females differently in each species. Our work demonstrates the importance of considering sex and life history stage when evaluating the evolution of behavior. Rev. Biol. Trop. 65 (1): 267-277. Epub 2017 March 01.
ResumenLos depredadores pueden influenciar una variedad de rasgos de la presa, incluyendo el comportamiento. Los rasgos tales como la audacia, nivel de actividad, y la tendencia a explorar; pueden ser moldeados por el riesgo de depredación. Nuestro estudio examina los efectos de la depredación en el comportamiento al considerar un sistema natural en el que dos especies hermanas de peces vivíparos, Brachyrhaphis roseni y B. terrabensis, se presentan en ambientes de depredación divergente. En febrero 2013, recolectamos peces en el drenaje del Río Chiriquí Nuevo, Chiriquí, Panamá y llevamos a cabo ensayos de comportamiento. Al usar ensayos de comportamiento en campo abierto, se evaluó el comportamiento en juveniles y adultos, machos y hembras, para determinar si los patrones de divergencia diferían entre las etapas ontogenéticas o entre sexos. Se evaluó la audacia como "tiempo en salir" de un refugio a un ambiente nuevo, y posteriormente se midió la actividad y la exploración dentro de ese nuevo ambiente. Nosotros predijimos que B. roseni (una especie que se presenta con los depredadores) sería más audaz, activa y propensa a explorar que B. terrabensis (una especie que no se presenta con los depredadores). En total, probamos 17 jóvenes, 21 machos adultos, y 20 hembras adultas de B. roseni, y 19 jóvenes, 19 machos adultos, y 18 hembras adultas de B. terrabensis. Recogimos todos los animales en Chiriquí, Panamá en Febrero 2013, y los probamos después de un corto período de aclimatación a las condiciones de laboratorio. Como se predijo, se encontró que la depredación ambiental se asoció con varias diferencias en el comportamiento. Tanto adultos y jóvenes de B. roseni eran más activos y más propensos a explorar que B. terrabensis. Sin embargo, no se encontraron diferencias en la audacia en adultos o menores. También se encontró una interacción significativa entre "sexo" y "especie" como predictores de la audacia y la exploración, lo que indica que la depredación puede afectar el comportamiento de los machos y hembras de manera diferente en cada especie. Nuestro estudio demuestra la importancia de considerar el sexo y la etapa del ciclo de vida al evaluar la evolución del comportamiento.