Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 63(22): 7124-7132, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37947485

RESUMO

We provide a molecular-level description of the thermodynamics and mechanistic aspects of drug permeation through the cell membrane. As a case study, we considered the antimalaria FDA approved drug chloroquine. Molecular dynamics simulations of the molecule (in its neutral and protonated form) were performed in the presence of different lipid bilayers, with the aim of uncovering key aspects of the permeation process, a fundamental step for the drug's action. Free energy values obtained by well-tempered metadynamics simulations suggest that the neutral form is the only permeating protomer, consistent with experimental data. H-bond interactions of the drug with water molecules and membrane headgroups play a crucial role for permeation. The presence of the transmembrane potential, investigated here for the first time in a drug permeation study, does not qualitatively affect these conclusions.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Água/química , Termodinâmica , Físico-Química
2.
J Chem Inf Model ; 63(5): 1406-1412, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36811959

RESUMO

MiMiC is a highly flexible, extremely scalable multiscale modeling framework. It couples the CPMD (quantum mechanics, QM) and GROMACS (molecular mechanics, MM) codes. The code requires preparing separate input files for the two programs with a selection of the QM region. This can be a tedious procedure prone to human error, especially when dealing with large QM regions. Here, we present MiMiCPy, a user-friendly tool that automatizes the preparation of MiMiC input files. It is written in Python 3 with an object-oriented approach. The main subcommand PrepQM can be used to generate MiMiC inputs directly from the command line or through a PyMOL/VMD plugin for visually selecting the QM region. Many other subcommands are also provided for debugging and fixing MiMiC input files. MiMiCPy is designed with a modular structure that allows seamless extensions to new program formats depending on the requirements of MiMiC.


Assuntos
Teoria Quântica , Software , Humanos , Simulação de Dinâmica Molecular
3.
J Chem Inf Model ; 63(12): 3647-3658, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37319347

RESUMO

The initial phases of drug discovery - in silico drug design - could benefit from first principle Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics (MD) simulations in explicit solvent, yet many applications are currently limited by the short time scales that this approach can cover. Developing scalable first principle QM/MM MD interfaces fully exploiting current exascale machines - so far an unmet and crucial goal - will help overcome this problem, opening the way to the study of the thermodynamics and kinetics of ligand binding to protein with first principle accuracy. Here, taking two relevant case studies involving the interactions of ligands with rather large enzymes, we showcase the use of our recently developed massively scalable Multiscale Modeling in Computational Chemistry (MiMiC) QM/MM framework (currently using DFT to describe the QM region) to investigate reactions and ligand binding in enzymes of pharmacological relevance. We also demonstrate for the first time strong scaling of MiMiC-QM/MM MD simulations with parallel efficiency of ∼70% up to >80,000 cores. Thus, among many others, the MiMiC interface represents a promising candidate toward exascale applications by combining machine learning with statistical mechanics based algorithms tailored for exascale supercomputers.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Ligantes , Proteínas/química , Desenho de Fármacos , Descoberta de Drogas , Teoria Quântica
4.
J Chem Inf Model ; 63(1): 161-172, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36468829

RESUMO

Chloroquine (CQ) is a first-choice drug against malaria and autoimmune diseases. It has been co-administered with zinc against SARS-CoV-2 and soon dismissed because of safety issues. The structural features of Zn-CQ complexes and the effect of CQ on zinc distribution in cells are poorly known. In this study, state-of-the-art computations combined with experiments were leveraged to solve the structural determinants of zinc-CQ interactions in solution and the solid state. NMR, ESI-MS, and X-ray absorption and diffraction methods were combined with ab initio molecular dynamics calculations to address the kinetic lability of this complex. Within the physiological pH range, CQ binds Zn2+ through the quinoline ring nitrogen, forming [Zn(CQH)Clx(H2O)3-x](3+)-x (x = 0, 1, 2, and 3) tetrahedral complexes. The Zn(CQH)Cl3 species is stable at neutral pH and at high chloride concentrations typical of the extracellular medium, but metal coordination is lost at a moderately low pH as in the lysosomal lumen. The pentacoordinate complex [Zn(CQH)(H2O)4]3+ may exist in the absence of chloride. This in vitro/in silico approach can be extended to other metal-targeting drugs and bioinorganic systems.


Assuntos
COVID-19 , Complexos de Coordenação , Humanos , Cloroquina/farmacologia , Cloroquina/química , Simulação de Dinâmica Molecular , Zinco/química , Cloretos , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Metais
5.
J Am Chem Soc ; 142(16): 7254-7258, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32233472

RESUMO

CLC channels and transporters conduct or transport various kinds of anions, with the exception of fluoride, which acts as an effective inhibitor. Here, we performed sub-nanosecond DFT-based QM/MM simulations of the E. coli anion/proton exchanger ClC-ec1 and observed that fluoride binds incoming protons within the selectivity filter, with excess protons shared with the gating glutamate E148. Depending on E148 conformation, the competition for the proton can involve either a direct F-/E148 interaction or the modulation of water molecules bridging the two anions. The direct interaction locks E148 in a conformation that does not allow for proton transport, and thus inhibits protein function.


Assuntos
Antiporters/metabolismo , Cloretos/metabolismo , Fluoretos/metabolismo , Humanos , Modelos Moleculares
6.
J Chem Inf Model ; 59(6): 2930-2940, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31033287

RESUMO

Phosphorylation by kinases enzymes is a widespread regulatory mechanism able of rapidly altering the function of target proteins. Among these are cytochrome P450s (CYP450), a superfamily of enzymes performing the oxidation of endogenous and exogenous substrates thanks to the electron supply of a redox partner. In spite of its pivotal role, the molecular mechanism by which phosphorylation modulates CYP450s metabolism remains elusive. Here by performing microsecond-long all-atom molecular dynamics simulations, we disclose how phosphorylation regulates estrogen biosynthesis, catalyzed by the Human Aromatase (HA) enzyme. Namely, we unprecedentedly propose that HA phosphorylation at Y361 markedly stabilizes its adduct with the flavin mononucleotide domain of CYP450s reductase (CPR), the redox partner of microsomal CYP450s, and a variety of other proteins. With CPR present at physiological conditions in a limiting ratio with respect to its multiple oxidative partners, the enhanced stability of the CPR/HA adduct may favor HA in the competition with the other proteins requiring CPR's electron supply, ultimately facilitating the electron transfer and estrogen biosynthesis. As a result, our work elucidates at atomic-level the post-translational regulation of CYP450s catalysis. Given the potential for rational clinical management of diseases associated with steroid metabolism disorders, unraveling this mechanism is of utmost importance, and raises the intriguing perspective of exploiting this knowledge to devise novel therapies.


Assuntos
Aromatase/química , Aromatase/metabolismo , Simulação de Dinâmica Molecular , Processamento de Proteína Pós-Traducional , Sítios de Ligação , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , NADP/metabolismo , Fosforilação , Conformação Proteica , Teoria Quântica
7.
J Am Chem Soc ; 138(44): 14592-14598, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27530537

RESUMO

The enzymatic polymerization of DNA and RNA is the basis for genetic inheritance for all living organisms. It is catalyzed by the DNA/RNA polymerase (Pol) superfamily. Here, bioinformatics analysis reveals that the incoming nucleotide substrate always forms an H-bond between its 3'-OH and ß-phosphate moieties upon formation of the Michaelis complex. This previously unrecognized H-bond implies a novel self-activated mechanism (SAM), which synergistically connects the in situ nucleophile formation with subsequent nucleotide addition and, importantly, nucleic acid translocation. Thus, SAM allows an elegant and efficient closed-loop sequence of chemical and physical steps for Pol catalysis. This is markedly different from previous mechanistic hypotheses. Our proposed mechanism is corroborated via ab initio QM/MM simulations on a specific Pol, the human DNA polymerase-η, an enzyme involved in repairing damaged DNA. The structural conservation of DNA and RNA Pols supports the possible extension of SAM to Pol enzymes from the three domains of life.


Assuntos
Simulação por Computador , DNA Polimerase Dirigida por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , DNA/química , RNA/química , Catálise , DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/farmacologia , RNA Polimerases Dirigidas por DNA/farmacologia , Humanos , Ligação de Hidrogênio , Modelos Biológicos , Polimerização , RNA/efeitos dos fármacos , Termodinâmica
8.
PLoS Comput Biol ; 10(9): e1003838, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25210764

RESUMO

Protein electrospray ionization (ESI) mass spectrometry (MS)-based techniques are widely used to provide insight into structural proteomics under the assumption that non-covalent protein complexes being transferred into the gas phase preserve basically the same intermolecular interactions as in solution. Here we investigate the applicability of this assumption by extending our previous structural prediction protocol for single proteins in ESI-MS to protein complexes. We apply our protocol to the human insulin dimer (hIns2) as a test case. Our calculations reproduce the main charge and the collision cross section (CCS) measured in ESI-MS experiments. Molecular dynamics simulations for 0.075 ms show that the complex maximizes intermolecular non-bonded interactions relative to the structure in water, without affecting the cross section. The overall gas-phase structure of hIns2 does exhibit differences with the one in aqueous solution, not inferable from a comparison with calculated CCS. Hence, care should be exerted when interpreting ESI-MS proteomics data based solely on NMR and/or X-ray structural information.


Assuntos
Insulina/química , Espectrometria de Massas/métodos , Simulação de Dinâmica Molecular , Proteômica/métodos , Humanos , Conformação Proteica , Termodinâmica
9.
Proc Natl Acad Sci U S A ; 109(25): 9744-9, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22675120

RESUMO

Fast lateral proton migration along membranes is of vital importance for cellular energy homeostasis and various proton-coupled transport processes. It can only occur if attractive forces keep the proton at the interface. How to reconcile this high affinity to the membrane surface with high proton mobility is unclear. Here, we tested whether a minimalistic model interface between an apolar hydrophobic phase (n-decane) and an aqueous phase mimics the biological pathway for lateral proton migration. The observed diffusion span, on the order of tens of micrometers, and the high proton mobility were both similar to the values previously reported for lipid bilayers. Extensive ab initio simulations on the same water/n-decane interface reproduced the experimentally derived free energy barrier for the excess proton. The free energy profile G(H(+)) adopts the shape of a well at the interface, having a width of two water molecules and a depth of 6 ± 2RT. The hydroniums in direct contact with n-decane have a reduced mobility. However, the hydroniums in the second layer of water molecules are mobile. Their in silico diffusion coefficient matches that derived from our in vitro experiments, (5.7 ± 0.7) 10(-5) cm(2) s(-1). Conceivably, these are the protons that allow for fast diffusion along biological membranes.


Assuntos
Prótons , Água/química , Difusão , Bicamadas Lipídicas
10.
Angew Chem Int Ed Engl ; 54(2): 467-71, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25417598

RESUMO

By combining ion-mobility mass spectrometry experiments with sub-millisecond classical and ab initio molecular dynamics we fully characterized, for the first time, the dynamic ensemble of a model nucleic acid in the gas phase under electrospray ionization conditions. The studied oligonucleotide unfolds upon vaporization, loses memory of the solution structure, and explores true gas-phase conformational space. Contrary to our original expectations, the oligonucleotide shows very rich dynamics in three different timescales (multi-picosecond, nanosecond, and sub-millisecond). The shorter timescale dynamics has a quantum mechanical nature and leads to changes in the covalent structure, whereas the other two are of classical origin. Overall, this study suggests that a re-evaluation on our view of the physics of nucleic acids upon vaporization is needed.


Assuntos
Gases/síntese química , Oligonucleotídeos/química , Estrutura Molecular
11.
Chemistry ; 20(37): 11719-25, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25111319

RESUMO

Cisplatin is one of the most used anticancer drugs. Its cellular influx and delivery to target DNA may involve the copper chaperone Atox1 protein. Although the mode of binding is established by NMR spectroscopy measurements in solution-the Pt atom binds to Cys12 and Cys15 while retaining the two ammine groups-the structural determinants of the adduct are not known. Here a structural model by hybrid Car-Parrinello density functional theory-based QM/MM simulations is provided. The platinated site minimally modifies the fold of the protein. The calculated NMR and CD spectral properties are fully consistent with the experimental data. Our in silico/in vitro approach provides, together with previous studies, an unprecedented view into the structural biology of cisplatin-protein adducts.


Assuntos
Antineoplásicos/química , Cisplatino/química , Cobre/química , Metalochaperonas/genética , Metalochaperonas/metabolismo , Chaperonas Moleculares/química , Proteínas de Transporte de Cobre , Humanos , Modelos Moleculares , Ligação Proteica
12.
Curr Opin Struct Biol ; 86: 102821, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38688076

RESUMO

The complexity of biological systems and processes, spanning molecular to macroscopic scales, necessitates the use of multiscale simulations to get a comprehensive understanding. Quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations are crucial for capturing processes beyond the reach of classical MD simulations. The advent of exascale computing offers unprecedented opportunities for scientific exploration, not least within life sciences, where simulations are essential to unravel intricate molecular mechanisms underlying biological processes. However, leveraging the immense computational power of exascale computing requires innovative algorithms and software designs. In this context, we discuss the current status and future prospects of multiscale biomolecular simulations on exascale supercomputers with a focus on QM/MM MD. We highlight our own efforts in developing a versatile and high-performance multiscale simulation framework with the aim of efficient utilization of state-of-the-art supercomputers. We showcase its application in uncovering complex biological mechanisms and its potential for leveraging exascale computing.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Software , Algoritmos
13.
Biochemistry ; 52(17): 2949-54, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23560717

RESUMO

UreG proteins are small GTP binding (G) proteins that catalyze the hydrolysis of GTP necessary for the maturation of urease, a virulence factor in bacterial pathogenesis. UreG proteins are the first documented cases of intrinsically disordered enzymes. The comprehension of the dynamics of folding-unfolding events occurring in this protein could shed light on the enzymatic mechanism of UreG. Here, we used the recently developed replica exchange with solute tempering (REST2) computational methodology to explore the conformational space of UreG from Helicobacter pylori (HpUreG) and to identify its structural fluctuations. The same simulation and analysis protocol has been applied to HypB from Methanocaldococcus jannaschii (MjHypB), which is closely related to UreG in both sequence and function, even though it is not intrinsically disordered. A comparison of the two systems reveals that both HpUreG and MjHypB feature a substantial rigidity of the protein regions involved in catalysis, justifying its residual catalytic activity. On the other hand, HpUreG tends to unfold more than MjHypB in portions involved in protein-protein interactions with metallochaperones necessary for the formation of multiprotein complexes known to be involved in urease activation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , Methanococcaceae/química , Modelos Moleculares , Proteínas de Ligação a Fosfato , Conformação Proteica
14.
Phys Chem Chem Phys ; 15(6): 2177-83, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23247608

RESUMO

The predicted structure has been calculated for a protein-based biosensor for inorganic phosphate (Pi), previously developed by some of us (Okoh et al., Biochemistry, 2006, 45, 14764). This is the phosphate binding protein from Escherichia coli labelled with two rhodamine fluorophores. Classical molecular dynamics and hybrid Car-Parrinello/molecular mechanics simulations allow us to provide molecular models of the biosensor both in the presence and in the absence of Pi. In the latter case, the rhodamine fluorophores maintain a stacked conformation in a 'face A to face B' orientation, which is different from the 'face A to face A' stacked orientation of free fluorophores in aqueous solution (Ilich et al., Spectrochim. Acta, Part A, 1996, 52, 1323). A protein conformation change upon binding Pi prevents significant stacking of the two rhodamines. In both states, the rhodamine fluorophores form hydrophobic contact with LEU291, without establishing significant hydrogen bonds with the protein. The accuracy of the models is established by a comparison between calculated and experimental absorption and circular dichroism spectra.


Assuntos
Técnicas Biossensoriais , Rodaminas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Proteínas de Ligação a Fosfato/química , Proteínas de Ligação a Fosfato/metabolismo , Fosfatos/química , Ligação Proteica , Estrutura Terciária de Proteína , Rodaminas/química
15.
J Phys Chem Lett ; 13(51): 12004-12010, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36540944

RESUMO

Native electrospray ionization-ion mobility mass spectrometry (N-ESI/IM-MS) is a powerful approach for low-resolution structural studies of DNAs in the free state and in complex with ligands. Solvent vaporization is coupled with proton transfers from ammonium ions to the DNA, resulting in a reduction of the DNA charge. Here we provide insight into these processes by classical molecular dynamics and quantum mechanics/molecular mechanics free energy calculations on the d(GpCpGpApApGpC) heptamer, for which a wealth of experiments is available. Our multiscale simulations, consistent with experimental data, reveal a highly complex scenario. The proton either sits on one of the molecules or is fully delocalized on both, depending on the level of hydration of the analytes and the size of the droplets formed during the electrospray experiments. This work complements our previous study of the intramolecular proton transfer on the same heptamer occurring after the processes studied here, and together, they provide a first molecular view of proton transfer in N-ESI/IM-MS.


Assuntos
Simulação de Dinâmica Molecular , Prótons , Espectrometria de Massas por Ionização por Electrospray/métodos , Íons/química , Solventes
16.
J Chem Theory Comput ; 18(1): 13-24, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34905353

RESUMO

We present an interface of the wavefunction-based quantum chemical software CFOUR to the multiscale modeling framework MiMiC. Electrostatic embedding of the quantum mechanical (QM) part is achieved by analytic evaluation of one-electron integrals in CFOUR, while the rest of the QM/molecular mechanical (MM) operations are treated according to the previous MiMiC-based QM/MM implementation. Long-range electrostatic interactions are treated by a multipole expansion of the potential from the QM electron density to reduce the computational cost without loss of accuracy. Testing on model water/water systems, we verified that the CFOUR interface to MiMiC is robust, guaranteeing fast convergence of the self-consistent field cycles and optimal conservation of the energy during the integration of the equations of motion. Finally, we verified that the CFOUR interface to MiMiC is compatible with the use of a QM/QM multiple time-step algorithm, which effectively reduces the cost of ab initio MD (AIMD) or QM/MM-MD simulations using higher level wavefunction-based approaches compared to cheaper density functional theory-based ones. The new wavefunction-based AIMD and QM/MM-MD implementations were tested and validated for a large number of wavefunction approaches, including Hartree-Fock and post-Hartree-Fock methods like Møller-Plesset, coupled-cluster, and complete active space self-consistent field.

17.
J Phys Chem Lett ; 12(18): 4415-4420, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33950673

RESUMO

The CLC family of anion channels and transporters includes Cl-/H+ exchangers (blocked by F-) and F-/H+ exchangers (or CLCFs). CLCFs contain a glutamate (E318) in the central anion-binding site that is absent in CLC Cl-/H+ exchangers. The X-ray structure of the protein from Enterococcus casseliflavus (CLCF-eca) shows that E318 tightly binds to F- when the gating glutamate (E118; highly conserved in the CLC family) faces the extracellular medium. Here, we use classical and DFT-based QM/MM metadynamics simulations to investigate proton transfer and release by CLCF-eca. After up to down movement of protonated E118, both glutamates combine with F- to form a triad, from which protons and F- anions are released as HF. Our results illustrate how glutamate insertion into the central anion-binding site of CLCF-eca permits the release of H+ to the cytosol as HF, thus enabling a net 1:1 F-/H+ stoichiometry.

18.
J Phys Chem B ; 125(1): 101-114, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33369425

RESUMO

Allosteric molecules provide a powerful means to modulate protein function. However, the effect of such ligands on distal orthosteric sites cannot be easily described by classical docking methods. Here, we applied machine learning (ML) approaches to expose the links between local dynamic patterns and different degrees of allosteric inhibition of the ATPase function in the molecular chaperone TRAP1. We focused on 11 novel allosteric modulators with similar affinities to the target but with inhibitory efficacy between the 26.3 and 76%. Using a set of experimentally related local descriptors, ML enabled us to connect the molecular dynamics (MD) accessible to ligand-bound (perturbed) and unbound (unperturbed) systems to the degree of ATPase allosteric inhibition. The ML analysis of the comparative perturbed ensembles revealed a redistribution of dynamic states in the inhibitor-bound versus inhibitor-free systems following allosteric binding. Linear regression models were built to quantify the percentage of experimental variance explained by the predicted inhibitor-bound TRAP1 states. Our strategy provides a comparative MD-ML framework to infer allosteric ligand functionality. Alleviating the time scale issues which prevent the routine use of MD, a combination of MD and ML represents a promising strategy to support in silico mechanistic studies and drug design.


Assuntos
Aprendizado de Máquina , Simulação de Dinâmica Molecular , Regulação Alostérica , Sítio Alostérico , Ligantes , Chaperonas Moleculares
19.
Inorg Chem ; 49(22): 10668-79, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20964419

RESUMO

The aggregation of alpha-synuclein (AS) is a critical step in the etiology of Parkinson's disease (PD). A central, unresolved question in the pathophysiology of PD relates to the role of AS-metal interactions in amyloid fibril formation and neurodegeneration. Our previous works established a hierarchy in alpha-synuclein-metal ion interactions, where Cu(II) binds specifically to the protein and triggers its aggregation under conditions that might be relevant for the development of PD. Two independent, non-interacting copper-binding sites were identified at the N-terminal region of AS, with significant difference in their affinities for the metal ion. In this work we have solved unknown details related to the structural binding specificity and aggregation enhancement mediated by Cu(II). The high-resolution structural characterization of the highest affinity N-terminus AS-Cu(II) complex is reported here. Through the measurement of AS aggregation kinetics we proved conclusively that the copper-enhanced AS amyloid formation is a direct consequence of the formation of the AS-Cu(II) complex at the highest affinity binding site. The kinetic behavior was not influenced by the His residue at position 50, arguing against an active role for this residue in the structural and biological events involved in the mechanism of copper-mediated AS aggregation. These new findings are central to elucidate the mechanism through which the metal ion participates in the fibrillization of AS and represent relevant progress in the understanding of the bioinorganic chemistry of PD.


Assuntos
Amiloide/química , Cobre/química , Doença de Parkinson , alfa-Sinucleína/química , Amiloide/metabolismo , Sítios de Ligação , Química Bioinorgânica , Cobre/metabolismo , Humanos , Modelos Moleculares , alfa-Sinucleína/metabolismo
20.
J Phys Chem Lett ; 11(4): 1189-1193, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31986051

RESUMO

Cytochromes P450 enzymes (CYP450s) promote the oxidative metabolism of a variety of substrates via the electrons supplied by the cytochrome P450 reductase (CPR) and upon formation of a CPR/CYP450 adduct. In spite of the pivotal regulatory importance of this process, the impact of CPR binding on the functional properties of its partner CYP450 remains elusive. By performing multiple microsecond-long all-atom molecular dynamics simulations of a 520 000-atom model of a CPR/CYP450 adduct embedded in a membrane mimic, we disclose the molecular terms for their interactions, considering the aromatase (HA) enzyme as a proxy of the CYP450 family. Our study strikingly unveils that CPR binding alters HA's functional motions, bolstering a change in the shape and type of the channels traveled by substrates/products during their access/egress to/from the enzyme's active site. Our outcomes unprecedentedly contribute to extricate the many entangled facets of the CYP450 metabolon, redrafting its intricate panorama from an atomic-level perspective.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Aromatase/química , Aromatase/metabolismo , Sistema Enzimático do Citocromo P-450/química , Transporte de Elétrons , Humanos , Simulação de Dinâmica Molecular , NADPH-Ferri-Hemoproteína Redutase/química , Ligação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA