Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Physiol Rev ; 102(2): 859-892, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34486392

RESUMO

Globin proteins exist in every cell type of the vasculature, from erythrocytes to endothelial cells, vascular smooth muscle cells, and peripheral nerve cells. Many globin subtypes are also expressed in muscle tissues (including cardiac and skeletal muscle), in other organ-specific cell types, and in cells of the central nervous system (CNS). The ability of each of these globins to interact with molecular oxygen (O2) and nitric oxide (NO) is preserved across these contexts. Endothelial α-globin is an example of extraerythrocytic globin expression. Other globins, including myoglobin, cytoglobin, and neuroglobin, are observed in other vascular tissues. Myoglobin is observed primarily in skeletal muscle and smooth muscle cells surrounding the aorta or other large arteries. Cytoglobin is found in vascular smooth muscle but can also be expressed in nonvascular cell types, especially in oxidative stress conditions after ischemic insult. Neuroglobin was first observed in neuronal cells, and its expression appears to be restricted mainly to the CNS and the peripheral nervous system. Brain and CNS neurons expressing neuroglobin are positioned close to many arteries within the brain parenchyma and can control smooth muscle contraction and thus tissue perfusion and vascular reactivity. Overall, reactions between NO and globin heme iron contribute to vascular homeostasis by regulating vasodilatory NO signals and scavenging reactive species in cells of the mammalian vascular system. Here, we discuss how globin proteins affect vascular physiology, with a focus on NO biology, and offer perspectives for future study of these functions.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Citoglobina/metabolismo , Células Endoteliais/metabolismo , Globinas/metabolismo , Animais , Humanos , Mioglobina/metabolismo , Neuroglobina/metabolismo
2.
Circ Res ; 135(4): 503-517, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38957990

RESUMO

BACKGROUND: PANX1 (pannexin 1), a ubiquitously expressed ATP release membrane channel, has been shown to play a role in inflammation, blood pressure regulation, and myocardial infarction. However, the possible role of PANX1 in cardiomyocytes in the progression of heart failure has not yet been investigated. METHOD: We generated a novel mouse line with constitutive deletion of PANX1 in cardiomyocytes (Panx1MyHC6). RESULTS: PANX1 deletion in cardiomyocytes had no effect on unstressed heart function but increased the glycolytic metabolism and resulting glycolytic ATP production, with a concurrent decrease in oxidative phosphorylation, both in vivo and in vitro. In vitro, treatment of H9c2 (H9c2 rat myoblast cell line) cardiomyocytes with isoproterenol led to PANX1-dependent release of ATP and Yo-Pro-1 uptake, as assessed by pharmacological blockade with spironolactone and siRNA-mediated knockdown of PANX1. To investigate nonischemic heart failure and the preceding cardiac hypertrophy, we administered isoproterenol, and we demonstrated that Panx1MyHC6 mice were protected from systolic and diastolic left ventricle volume increases as a result of cardiomyocyte hypertrophy. Moreover, we found that Panx1MyHC6 mice showed decreased isoproterenol-induced recruitment of immune cells (CD45+), particularly neutrophils (CD11b+ [integrin subunit alpha M], Ly6g+ [lymphocyte antigen 6 family member G]), to the myocardium. CONCLUSIONS: Together, these data demonstrate that PANX1 deficiency in cardiomyocytes increases glycolytic metabolism and protects against cardiac hypertrophy in nonischemic heart failure at least in part by reducing immune cell recruitment. Our study implies PANX1 channel inhibition as a therapeutic approach to ameliorate cardiac dysfunction in patients with heart failure.


Assuntos
Conexinas , Glicólise , Miócitos Cardíacos , Proteínas do Tecido Nervoso , Infiltração de Neutrófilos , Animais , Conexinas/genética , Conexinas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Isoproterenol/farmacologia , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Camundongos Endogâmicos C57BL , Linhagem Celular , Masculino , Trifosfato de Adenosina/metabolismo , Camundongos Knockout , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia
3.
J Biol Chem ; 300(4): 107132, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432636

RESUMO

Heme is an iron-containing prosthetic group necessary for the function of several proteins termed "hemoproteins." Erythrocytes contain most of the body's heme in the form of hemoglobin and contain high concentrations of free heme. In nonerythroid cells, where cytosolic heme concentrations are 2 to 3 orders of magnitude lower, heme plays an essential and often overlooked role in a variety of cellular processes. Indeed, hemoproteins are found in almost every subcellular compartment and are integral in cellular operations such as oxidative phosphorylation, amino acid metabolism, xenobiotic metabolism, and transcriptional regulation. Growing evidence reveals the participation of heme in dynamic processes such as circadian rhythms, NO signaling, and the modulation of enzyme activity. This dynamic view of heme biology uncovers exciting possibilities as to how hemoproteins may participate in a range of physiologic systems. Here, we discuss how heme is regulated at the level of its synthesis, availability, redox state, transport, and degradation and highlight the implications for cellular function and whole organism physiology.


Assuntos
Fenômenos Fisiológicos Celulares , Heme , Animais , Humanos , Ritmo Circadiano/fisiologia , Heme/metabolismo , Hemeproteínas/metabolismo , Oxirredução , Transdução de Sinais , Espaço Intracelular/metabolismo , Fenômenos Fisiológicos Celulares/fisiologia
4.
Physiol Genomics ; 56(2): 113-127, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982169

RESUMO

Endothelial cells (ECs) adapt to the unique needs of their resident tissue and metabolic perturbations, such as obesity. We sought to understand how obesity affects EC metabolic phenotypes, specifically mitochondrial gene expression. We investigated the mesenteric and adipose endothelium because these vascular beds have distinct roles in lipid homeostasis. Initially, we performed bulk RNA sequencing on ECs from mouse adipose and mesenteric vasculatures after a normal chow (NC) diet or high-fat diet (HFD) and found higher mitochondrial gene expression in adipose ECs compared with mesenteric ECs in both NC and HFD mice. Next, we performed single-cell RNA sequencing and categorized ECs as arterial, capillary, venous, or lymphatic. We found mitochondrial genes to be enriched in adipose compared with mesentery under NC conditions in artery and capillary ECs. After HFD, these genes were decreased in adipose ECs, becoming like mesenteric ECs. Transcription factor analysis revealed that peroxisome proliferator-activated receptor-γ (PPAR-γ) had high specificity in NC adipose artery and capillary ECs. These findings were recapitulated in single-nuclei RNA-sequencing data from human visceral adipose. The sum of these findings suggests that mesenteric and adipose arterial ECs metabolize lipids differently, and the transcriptional phenotype of the vascular beds converges in obesity due to downregulation of PPAR-γ in adipose artery and capillary ECs.NEW & NOTEWORTHY Using bulk and single-cell RNA sequencing on endothelial cells from adipose and mesentery, we found that an obesogenic diet induces a reduction in adipose endothelial oxidative phosphorylation gene expression, resulting in a phenotypic convergence of mesenteric and adipose endothelial cells. Furthermore, we found evidence that PPAR-γ drives this phenotypic shift. Mining of human data sets segregated based on body mass index supported these findings. These data point to novel mechanisms by which obesity induces endothelial dysfunction.


Assuntos
Endotélio Vascular , Genes Mitocondriais , Humanos , Camundongos , Animais , Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Artérias , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Tecido Adiposo/metabolismo
5.
Nitric Oxide ; 150: 47-52, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39097183

RESUMO

In the vasculature, nitric oxide (NO) is produced in the endothelium by endothelial nitric oxide synthase (eNOS) and is critical for the regulation of blood flow and blood pressure. Blood flow may also be regulated by the formation of nitrite-derived NO catalyzed by hemoproteins under hypoxic conditions. We sought to investigate whether nitrite administration may affect tissue perfusion and systemic hemodynamics in WT and eNOS knockout mice. We found that global eNOS KO mice show decreased tissue perfusion compared to WT mice by using laser speckle contrast imaging. To study both the acute and long-term effects of sodium nitrite (0, 0.1, 1, and 10 mg/kg) on peripheral blood flow and systemic blood pressure, a bolus of nitrite was delivered intraperitoneally every 24 h over 4 consecutive days. We found that nitrite administration resulted in a dose-dependent and acute increase in peripheral blood flow in eNOS KO mice but had no effects in WT mice. The nitrite induced changes in tissue perfusion were transient, as determined by intraindividual comparisons of tissue perfusion 24-h after injection. Accordingly, 10 mg/kg sodium nitrite acutely decreased blood pressure in eNOS KO mice but not in WT mice as determined by invasive Millar catheterization. Interestingly, we found the vasodilatory effects of nitrite to be inversely correlated to baseline tissue perfusion. These results demonstrate the nitrite acutely recovers hypoperfusion and hypertension in global eNOS KO mice and suggest the vasodilatory actions of nitrite are dependent upon tissue hypoperfusion.


Assuntos
Camundongos Knockout , Óxido Nítrico Sintase Tipo III , Animais , Óxido Nítrico Sintase Tipo III/metabolismo , Camundongos , Hemodinâmica/efeitos dos fármacos , Nitrito de Sódio/farmacologia , Masculino , Pressão Sanguínea/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Nitritos/farmacologia , Fluxo Sanguíneo Regional/efeitos dos fármacos
6.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33879616

RESUMO

Recent studies have focused on the contribution of capillary endothelial TRPV4 channels to pulmonary pathologies, including lung edema and lung injury. However, in pulmonary hypertension (PH), small pulmonary arteries are the focus of the pathology, and endothelial TRPV4 channels in this crucial anatomy remain unexplored in PH. Here, we provide evidence that TRPV4 channels in endothelial cell caveolae maintain a low pulmonary arterial pressure under normal conditions. Moreover, the activity of caveolar TRPV4 channels is impaired in pulmonary arteries from mouse models of PH and PH patients. In PH, up-regulation of iNOS and NOX1 enzymes at endothelial cell caveolae results in the formation of the oxidant molecule peroxynitrite. Peroxynitrite, in turn, targets the structural protein caveolin-1 to reduce the activity of TRPV4 channels. These results suggest that endothelial caveolin-1-TRPV4 channel signaling lowers pulmonary arterial pressure, and impairment of endothelial caveolin-1-TRPV4 channel signaling contributes to elevated pulmonary arterial pressure in PH. Thus, inhibiting NOX1 or iNOS activity, or lowering endothelial peroxynitrite levels, may represent strategies for restoring vasodilation and pulmonary arterial pressure in PH.


Assuntos
Cavéolas/metabolismo , Endotélio Vascular/metabolismo , Ácido Peroxinitroso/metabolismo , Hipertensão Arterial Pulmonar/etiologia , Canais de Cátion TRPV/metabolismo , Animais , Pressão Arterial , Humanos , Camundongos Knockout , NADPH Oxidase 1/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Proteína Quinase C/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Canais de Cátion TRPV/genética
7.
Am J Physiol Renal Physiol ; 324(1): F30-F42, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36264884

RESUMO

Collectrin (Tmem27), an angiotensin-converting enzyme 2 homologue, is a chaperone of amino acid transporters in the kidney and endothelium. Global collectrin knockout (KO) mice have hypertension, endothelial dysfunction, exaggerated salt sensitivity, and diminished renal blood flow. This phenotype is associated with altered nitric oxide and superoxide balance and increased proximal tubule (PT) Na+/H+ exchanger isoform 3 (NHE3) expression. Collectrin is located on the X chromosome where genome-wide association population studies have largely been excluded. In the present study, we generated PT-specific collectrin KO (PT KO) mice to determine the precise contribution of PT collectrin in blood pressure homeostasis. We also examined the association of human TMEM27 single-nucleotide polymorphisms with blood pressure traits in 11,926 Hispanic Community Health Study/Study of Latinos (HCHS/SOL) Hispanic/Latino participants. PT KO mice exhibited hypertension, and this was associated with increased baseline NHE3 expression and diminished lithium excretion. However, PT KO mice did not display exaggerated salt sensitivity or a reduction in renal blood flow compared with control mice. Furthermore, PT KO mice exhibited enhanced endothelium-mediated dilation, suggesting a compensatory response to systemic hypertension induced by deficiency of collectrin in the PT. In HCHS/SOL participants, we observed sex-specific single-nucleotide polymorphism associations with diastolic blood pressure. In conclusion, loss of collectrin in the PT is sufficient to induce hypertension, at least in part, through activation of NHE3. Importantly, our model supports the notion that altered renal blood flow may be a determining factor for salt sensitivity. Further studies are needed to investigate the role of the TMEM27 locus on blood pressure and salt sensitivity in humans.NEW & NOTEWORTHY The findings of our study are significant in several ways: 1) loss of an amino acid chaperone in the proximal tubule is sufficient to cause hypertension, 2) the results in global and proximal tubule-specific collectrin knockout mice support the notion that vascular dysfunction is required for salt sensitivity or that impaired renal tubule function causes hypertension but is not sufficient to cause salt sensitivity, and 3) our study is the first to implicate a role of collectrin in human hypertension.


Assuntos
Pressão Sanguínea , Hipertensão , Túbulos Renais Proximais , Glicoproteínas de Membrana , Animais , Feminino , Humanos , Masculino , Camundongos , Pressão Sanguínea/fisiologia , Estudo de Associação Genômica Ampla , Hispânico ou Latino/genética , Hipertensão/genética , Túbulos Renais Proximais/metabolismo , Camundongos Knockout , Cloreto de Sódio na Dieta/metabolismo , Trocador 3 de Sódio-Hidrogênio/genética , Trocador 3 de Sódio-Hidrogênio/metabolismo , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética
8.
Am J Physiol Heart Circ Physiol ; 325(2): H338-H345, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37389954

RESUMO

Rodent husbandry requires careful consideration of environmental factors that may impact colony performance and subsequent physiological studies. Of note, recent reports have suggested corncob bedding may affect a broad range of organ systems. As corncob bedding may contain digestible hemicelluloses, trace sugars, and fiber, we hypothesized that corncob bedding impacts overnight fasting blood glucose and murine vascular function. Here, we compared mice housed on corncob bedding, which were then fasted overnight on either corncob or ALPHA-dri bedding, a virgin paper pulp cellulose alternative. Male and female mice were used from two noninduced, endothelial-specific conditional knockout strains [Cadherin 5-cre/ERT2, floxed hemoglobin-α1 (Hba1fl/fl) or Cadherin 5-cre/ERT2, floxed cytochrome-B5 reductase 3 (CyB5R3fl/fl)] on a C57BL/6J genetic background. After fasting overnight, initial fasting blood glucose was measured, and mice were anesthetized with isoflurane for measurement of blood perfusion via laser speckle contrast analysis using a PeriMed PeriCam PSI NR system. After a 15-min equilibration, the mice were injected intraperitoneally with the α1-adrenergic receptor agonist, phenylephrine (5 mg/kg), or saline, and monitored for changes in blood perfusion. After a 15-min response period, blood glucose was remeasured postprocedure. In both strains, mice fasted on corncob bedding had higher blood glucose than the pulp cellulose group. In the CyB5R3fl/fl strain, mice housed on corncob bedding displayed a significant reduction in phenylephrine-mediated change in perfusion. In the Hba1fl/fl strain, phenylephrine-induced change in perfusion was not different in the corncob group. This work suggests that corncob bedding, in part due to its ingestion by mice, could impact vascular measurements and fasting blood glucose. To promote scientific rigor and improve reproducibility, bedding type should be routinely included in published methods.NEW & NOTEWORTHY This study demonstrates real-time measurement of changes in perfusion to pharmacological treatment using laser speckle contrast analysis. Furthermore, this investigation revealed that fasting mice overnight on corncob bedding has differential effects on vascular function and that there was increased fasting blood glucose in mice fasted on corncob bedding compared with paper pulp cellulose bedding. This highlights the impact that bedding type can have on outcomes in vascular and metabolic research and reinforces the need for thorough and robust reporting of animal husbandry practices.


Assuntos
Glicemia , Abrigo para Animais , Animais , Camundongos , Masculino , Feminino , Hemoglobinas Glicadas , Reprodutibilidade dos Testes , Camundongos Endogâmicos C57BL , Celulose , Roupas de Cama, Mesa e Banho , Jejum
9.
Proc Natl Acad Sci U S A ; 117(17): 9497-9507, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32300005

RESUMO

Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) is a critical mediator of vascular function. eNOS is tightly regulated at various levels, including transcription, co- and posttranslational modifications, and by various protein-protein interactions. Using stable isotope labeling with amino acids in cell culture (SILAC) and mass spectrometry (MS), we identified several eNOS interactors, including the protein plasminogen activator inhibitor-1 (PAI-1). In cultured human umbilical vein endothelial cells (HUVECs), PAI-1 and eNOS colocalize and proximity ligation assays demonstrate a protein-protein interaction between PAI-1 and eNOS. Knockdown of PAI-1 or eNOS eliminates the proximity ligation assay (PLA) signal in endothelial cells. Overexpression of eNOS and HA-tagged PAI-1 in COS7 cells confirmed the colocalization observations in HUVECs. Furthermore, the source of intracellular PAI-1 interacting with eNOS was shown to be endocytosis derived. The interaction between PAI-1 and eNOS is a direct interaction as supported in experiments with purified proteins. Moreover, PAI-1 directly inhibits eNOS activity, reducing NO synthesis, and the knockdown or antagonism of PAI-1 increases NO bioavailability. Taken together, these findings place PAI-1 as a negative regulator of eNOS and disruptions in eNOS-PAI-1 binding promote increases in NO production and enhance vasodilation in vivo.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Disponibilidade Biológica , Linhagem Celular , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Óxido Nítrico , Óxido Nítrico Sintase Tipo III/genética , Piperazinas/farmacologia , Inibidor 1 de Ativador de Plasminogênio/genética , Ligação Proteica , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , para-Aminobenzoatos/farmacologia
10.
Circulation ; 144(11): 870-889, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34229449

RESUMO

BACKGROUND: Current paradigms suggest that nitric oxide (NO) produced by endothelial cells (ECs) through endothelial nitric oxide synthase (eNOS) in the vessel wall is the primary regulator of blood flow and blood pressure. However, red blood cells (RBCs) also carry a catalytically active eNOS, but its role is controversial and remains undefined. This study aimed to elucidate the functional significance of RBC eNOS compared with EC eNOS for vascular hemodynamics and nitric oxide metabolism. METHODS: We generated tissue-specific loss- and gain-of-function models for eNOS by using cell-specific Cre-induced gene inactivation or reactivation. We created 2 founder lines carrying a floxed eNOS (eNOSflox/flox) for Cre-inducible knockout (KO), and gene construct with an inactivated floxed/inverted exon (eNOSinv/inv) for a Cre-inducible knock-in (KI), which respectively allow targeted deletion or reactivation of eNOS in erythroid cells (RBC eNOS KO or RBC eNOS KI mice) or in ECs (EC eNOS KO or EC eNOS KI mice). Vascular function, hemodynamics, and nitric oxide metabolism were compared ex vivo and in vivo. RESULTS: The EC eNOS KOs exhibited significantly impaired aortic dilatory responses to acetylcholine, loss of flow-mediated dilation, and increased systolic and diastolic blood pressure. RBC eNOS KO mice showed no alterations in acetylcholine-mediated dilation or flow-mediated dilation but were hypertensive. Treatment with the nitric oxide synthase inhibitor Nγ-nitro-l-arginine methyl ester further increased blood pressure in RBC eNOS KOs, demonstrating that eNOS in both ECs and RBCs contributes to blood pressure regulation. Although both EC eNOS KOs and RBC eNOS KOs had lower plasma nitrite and nitrate concentrations, the levels of bound NO in RBCs were lower in RBC eNOS KOs than in EC eNOS KOs. Reactivation of eNOS in ECs or RBCs rescues the hypertensive phenotype of the eNOSinv/inv mice, whereas the levels of bound NO were restored only in RBC eNOS KI mice. CONCLUSIONS: These data reveal that eNOS in ECs and RBCs contribute independently to blood pressure homeostasis.


Assuntos
Pressão Sanguínea/fisiologia , Células Endoteliais/metabolismo , Eritrócitos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Acetilcolina/farmacologia , Animais , Doenças da Aorta/tratamento farmacológico , Arginina/análogos & derivados , Arginina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Contagem de Eritrócitos/métodos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA