RESUMO
Prostate carcinoma is a malignant situation that arises from genomic alterations in the prostate, leading to changes in tumorigenesis. The NF-κB pathway modulates various biological mechanisms, including inflammation and immune responses. Dysregulation of NF-κB promotes carcinogenesis, including increased proliferation, invasion, and therapy resistance. As an incurable disease globally, prostate cancer is a significant health concern, and research into genetic mutations and NF-κB function has the efficacy to facilitate the introduction of novel therapies. NF-κB upregulation is observed during prostate cancer progression, resulting in increased cell cycle progression and proliferation rates. Additionally, NF-κB endorses resistance to cell death and enhances the capacity for metastasis, particularly bone metastasis. Overexpression of NF-κB triggers chemoresistance and radio-resistance, and inhibition of NF-κB by anti-tumor compounds can reduce cancer progression. Interestingly, non-coding RNA transcripts can regulate NF-κB level and its nuclear transfer, offering a potential avenue for modulating prostate cancer progression.
Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Masculino , Humanos , NF-kappa B/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias Ósseas/genética , Carcinogênese/genética , Mutação , Regulação Neoplásica da Expressão Gênica , Linhagem Celular TumoralRESUMO
Smartphone-derived colorimetric tools have the potential to revolutionize food safety control by enabling citizens to carry out monitoring assays. To realize this, it is of paramount significance to recognize recent study efforts and figure out important technology gaps in terms of food security. Driven by international connectivity and the extensive distribution of smartphones, along with their built-in probes and powerful computing abilities, smartphone-based sensors have shown enormous potential as cost-effective and portable diagnostic scaffolds for point-of-need tests. Meantime, the colorimetric technique is of particular notice because of its benefits of rapidity, simplicity, and high universality. In this study, we tried to outline various colorimetric platforms using smartphone technology, elucidate their principles, and explore their applications in detecting target analytes (pesticide residues, antibiotic residues, metal ions, pathogenic bacteria, toxins, and mycotoxins) considering their sensitivity and multiplexing capability. Challenges and desired future perspectives for cost-effective, accurate, reliable, and multi-functions smartphone-based colorimetric tools have also been debated.
RESUMO
PURPOSE: Ototoxicity is one of the major adverse effects of cisplatin therapy which restrict its clinical application. Alpha-lipoic acid administration may mitigate cisplatin-induced ototoxicity. In the present study, we reviewed the protective potentials of alpha-lipoic acid against the cisplatin-mediated ototoxic adverse effects. METHODS: Based on the PRISMA guideline, we performed a systematic search for the identification of all relevant studies in various electronic databases up to June 2022. According to the inclusion and exclusion criteria, the obtained articles (n=59) were screened and 13 eligible articles were finally included in the present study. RESULTS: The findings of in-vitro experiments showed that cisplatin treatment signiï¬cantly reduced the auditory cell viability in comparison with the control group; nevertheless, the alpha-lipoic acid co-administration protected the cells against the reduction of cell viability induced by cisplatin treatment. Moreover, the in-vivo results of the auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) tests revealed a decrease in DPOAE and an increase in ABR threshold of cisplatin-injected animals; however, it was shown that alpha-lipoic acid co-treatment had an opposite pattern on the evaluated parameters. Other findings demonstrated that cisplatin treatment could significantly induce the biochemical and histopathological alterations in inner ear cells/tissue; in contrast, alpha-lipoic acid co-treatment ameliorated the cisplatin-mediated biochemical and histological changes. CONCLUSION: The findings of audiometry, biochemical parameters, and histological evaluation showed that alpha-lipoic acid co-administration alleviates the cisplatin-induced ototoxicity. The protective role of alpha-lipoic acid against the cisplatin-induced ototoxicity can be due to different mechanisms of anti-oxidant, anti-apoptotic, anti-inï¬ammatory activities, and regulation of cell cycle progression.