Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Cancer Sci ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924236

RESUMO

Osteosarcoma (OS) in humans is characterized by alterations in the TP53 gene. In mice, loss of p53 triggers OS development, for which c-Myc (Myc) oncogenicity is indispensable. However, little is known about which genes are targeted by Myc to promote tumorigenesis. Here, we examined the role of γ-glutamylcyclotransferase (Ggct) which is a component enzyme of the γ-glutamyl cycle essential for glutathione homeostasis, in human and mouse OS development. We found that GGCT is a poor prognostic factor for human OS, and that deletion of Ggct suppresses p53-deficient osteosarcomagenesis in mice. Myc upregulates Ggct directly by binding to the Ggct promoter, and deletion of a Myc binding site therein by genome editing attenuated the tumorigenic potential of p53-deficient OS cells. Taken together, these results show a rationale that GGCT is widely upregulated in cancer cells and solidify its suitability as a target for anticancer drugs.

2.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396954

RESUMO

Runx2 (runt related transcription factor 2) is an essential transcription factor for osteoblast proliferation and differentiation. Uridine diphosphate (UDP)-N-acetylgalactosamine (GalNAc): polypeptide GalNAc-transferase 3 (Galnt3) prevents proteolytic processing of fibroblast growth factor 23 (Fgf23), which is a hormone that regulates the serum level of phosphorus. Runx2 and Galnt3 were expressed in osteoblasts and osteocytes, and Fgf23 expression was restricted to osteocytes in bone. Overexpression and knock-down of Runx2 upregulated and downregulated, respectively, the expressions of Galnt3 and Fgf23, and Runx2 directly regulated the transcriptional activity of Galnt3 in reporter assays. The expressions of Galnt3 and Fgf23 in osteoblast-specific Runx2 knockout (Runx2fl/flCre) mice were about half those in Runx2fl/fl mice. However, the serum levels of phosphorus and intact Fgf23 in Runx2fl/flCre mice were similar to those in Runx2fl/fl mice. The trabecular bone volume was increased during aging in both male and female Galnt3-/- mice, but the osteoid was reduced. The markers for bone formation and resorption in Galnt3-/- mice were similar to the control in both sexes. Galnt3-/- mice exhibited hyperphosphatemia and hypercalcemia, and the intact Fgf23 was about 40% that of wild-type mice. These findings indicated that Runx2 regulates the expressions of Galnt3 and Fgf23 and that Galnt3 decelerates the mineralization of osteoid by stabilizing Fgf23.


Assuntos
Calcificação Fisiológica , Calcinose , N-Acetilgalactosaminiltransferases , Osteoblastos , Animais , Feminino , Masculino , Camundongos , Calcinose/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Fatores de Crescimento de Fibroblastos/metabolismo , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Osteoblastos/metabolismo , Fósforo , Polipeptídeo N-Acetilgalactosaminiltransferase
3.
Biochem Biophys Res Commun ; 667: 104-110, 2023 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-37210870

RESUMO

Biomechanical forces are known to regulate the biological behaviors of cells. Although negative pressure has been used for wound healing, it is still unknown about its role in regulating cell plasticity. We investigated whether negative pressure could induce the dedifferentiation of hepatocytes. Using a commercial device, we found that the exposure of primary human hepatocytes to -50 mmHg quickly induced the formation of stress fibers and obviously changed cell morphology in 72 h. Moreover, the exposure of hepatocytes to -50 mmHg significantly upregulated RhoA, ROCK1, and ROCK2 in 1-6 h, and dramatically enhanced the expression of marker molecules on "stemness", such as OCT4, SOX2, KLF4, MYC, NANOG, and CD133 in 6-72 h. However, all these changes in hepatocytes induced by -50 mmHg stimulation were almost abrogated by ROCK inhibitor Y27623. Our data suggest that an appropriate force of negative pressure stimulation can effectively induce the dedifferentiation of hepatocytes via RhoA/ROCK pathway activation.


Assuntos
Desdiferenciação Celular , Hepatócitos , Proteína rhoA de Ligação ao GTP , Humanos , Hepatócitos/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Transdução de Sinais , Desdiferenciação Celular/genética , Desdiferenciação Celular/fisiologia
4.
Phys Chem Chem Phys ; 26(1): 153-160, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38086634

RESUMO

The production of energy sources by metal-free photocatalysts based on graphitic carbon nitride (g-C3N4) has garnered substantial attention. In this study, nitrogen-rich carbon nitride (C3N5) was successfully synthesized through the thermal polycondensation of 3-amino-1,2,4-triazole. The structural and physical characterization has suggested that a portion of the triazine rings, which constitute the structural framework of g-C3N4, may be substituted with five-membered rings in C3N5. Furthermore, the polymerization of C3N5 proceeded more extensively than that of g-C3N4 from melamine precursors. The increased nitrogen content in C3N5 resulted in a heightened number of π-electrons and a narrowed energy bandgap, with the potential of the valence band maximum being negatively shifted. Additionally, photocatalytic assessments encompassing nitro blue tetrazolium reduction, H2 production from triethanolamine aqueous solution, and CO2 reduction in the liquid phase were performed. All findings demonstrated that C3N5 exhibits significantly superior photocatalytic properties compared to g-C3N4. It is particularly noteworthy that C3N5 selectively generates methanol and H2 from oversaturated CO2 solutions under visible light irradiation, while g-C3N4 selectively generates formaldehyde. These outcomes strongly indicate that C3N5 serves as a metal-free, visible-light-responsive photocatalyst, capable of contributing to both the production of renewable energy sources and the reduction of greenhouse effect gases.

5.
PLoS Genet ; 16(11): e1009169, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253203

RESUMO

Chondrocytes proliferate and mature into hypertrophic chondrocytes. Vascular invasion into the cartilage occurs in the terminal hypertrophic chondrocyte layer, and terminal hypertrophic chondrocytes die by apoptosis or transdifferentiate into osteoblasts. Runx2 is essential for osteoblast differentiation and chondrocyte maturation. Runx2-deficient mice are composed of cartilaginous skeletons and lack the vascular invasion into the cartilage. However, the requirement of Runx2 in the vascular invasion into the cartilage, mechanism of chondrocyte transdifferentiation to osteoblasts, and its significance in bone development remain to be elucidated. To investigate these points, we generated Runx2fl/flCre mice, in which Runx2 was deleted in hypertrophic chondrocytes using Col10a1 Cre. Vascular invasion into the cartilage was similarly observed in Runx2fl/fl and Runx2fl/flCre mice. Vegfa expression was reduced in the terminal hypertrophic chondrocytes in Runx2fl/flCre mice, but Vegfa was strongly expressed in osteoblasts in the bone collar, suggesting that Vegfa expression in bone collar osteoblasts is sufficient for vascular invasion into the cartilage. The apoptosis of terminal hypertrophic chondrocytes was increased and their transdifferentiation was interrupted in Runx2fl/flCre mice, leading to lack of primary spongiosa and osteoblasts in the region at E16.5. The osteoblasts appeared in this region at E17.5 in the absence of transdifferentiation, and the number of osteoblasts and the formation of primary spongiosa, but not secondary spongiosa, reached to levels similar those in Runx2fl/fl mice at birth. The bone structure and volume and all bone histomophometric parameters were similar between Runx2fl/fl and Runx2fl/flCre mice after 6 weeks of age. These findings indicate that Runx2 expression in terminal hypertrophic chondrocytes is not required for vascular invasion into the cartilage, but is for their survival and transdifferentiation into osteoblasts, and that the transdifferentiation is necessary for trabecular bone formation in embryonic and neonatal stages, but not for acquiring normal bone structure and volume in young and adult mice.


Assuntos
Transdiferenciação Celular/genética , Condrócitos/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoblastos/fisiologia , Osteogênese/genética , Fatores Etários , Animais , Apoptose/genética , Osso Esponjoso/citologia , Osso Esponjoso/embriologia , Osso Esponjoso/crescimento & desenvolvimento , Cartilagem/irrigação sanguínea , Cartilagem/citologia , Cartilagem/metabolismo , Sobrevivência Celular/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Periósteo/citologia , Periósteo/embriologia , Periósteo/crescimento & desenvolvimento , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362086

RESUMO

RUNX proteins, such as RUNX2, regulate the proliferation and differentiation of chondrocytes and osteoblasts. Haploinsufficiency of RUNX2 causes cleidocranial dysplasia, but a detailed analysis of Runx2+/- mice has not been reported. Furthermore, CBFB is required for the stability and DNA binding of RUNX family proteins. CBFB has two isoforms, and CBFB2 plays a major role in skeletal development. The calvaria, femurs, vertebrae and ribs in Cbfb2-/- mice were analyzed after birth, and compared with those in Runx2+/- mice. Calvarial development was impaired in Runx2+/- mice but mildly delayed in Cbfb2-/- mice. In femurs, the cortical bone but not trabecular bone was reduced in Cbfb2-/- mice, whereas both the trabecular and cortical bone were reduced in Runx2+/- mice. The trabecular bone in vertebrae increased in Cbfb2-/- mice but not in Runx2+/- mice. Rib development was impaired in Cbfb2-/- mice but not in Runx2+/- mice. These differences were likely caused by differences in the indispensability of CBFB and RUNX2, the balance of bone formation and resorption, or the number and maturation stage of osteoblasts. Thus, different amounts of CBFB and RUNX2 were required among the bone tissues for proper bone development and maintenance.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Osteoblastos , Animais , Camundongos , Diferenciação Celular/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidades alfa de Fatores de Ligação ao Core/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética , Costelas/metabolismo , Crânio/metabolismo , Coluna Vertebral/metabolismo
7.
FASEB J ; 32(4): 1903-1915, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29282249

RESUMO

Extracellular low phosphate strongly enhances intestinal calcium absorption independently of active vitamin D [1,25(OH)2D3] signaling, but the underlying mechanisms remain poorly characterized. To elucidate the phosphate-dependent regulation of calcium transport, we investigated part of the enteral environment that is involved in 1,25(OH)2D3-independent calcium absorption, which responds to dietary phosphate levels in mice that lack intestinal vitamin D receptor ( Vdr) activity. Impaired calcium absorption in intestinal Vdr-null mice was improved by dietary phosphate restriction. Accordingly, calcium transport in cultured intestinal epithelial cells was increased when the apical side was exposed to low phosphate levels (0.5 mM) compared with normal or high phosphate levels (1.0 or 5.0 mM, respectively). Mechanistically, low phosphate increased ATP in the apical side medium and allowed calcium entry into epithelial cells via the P2X7 purinoreceptor, which results in increased calcium transport. We found that luminal ATP was regulated by the release and degradation of ATP at the epithelium, and phosphate restriction increased ATP release from epithelial cells via connexin-43 hemichannels. Furthermore, ATP degradation by ectonucleotide pyrophosphatase-1 was reduced, which was caused by the reduction of the MAPK cascade. These findings indicate that luminal ATP metabolism regulates transcellular calcium transport in the intestine by an 1,25(OH)2D3-independent mechanism in response to dietary phosphate levels.-Uekawa, A., Yamanaka, H., Lieben, L., Kimira, Y., Uehara, M., Yamamoto, Y., Kato, S., Ito, K., Carmeliet, G., Masuyama, R. Phosphate-dependent luminal ATP metabolism regulates transcellular calcium transport in intestinal epithelial cells.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Mucosa Intestinal/metabolismo , Transcitose , Animais , Células Cultivadas , Conexina 43/metabolismo , Feminino , Absorção Intestinal , Sistema de Sinalização das MAP Quinases , Camundongos , Fosfatos/metabolismo , Pirofosfatases/metabolismo , Vitamina D/metabolismo
8.
Int J Mol Sci ; 19(7)2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30011933

RESUMO

γ-Glutamylcyclotransferase (GGCT), which is one of the major enzymes involved in glutathione metabolism, is upregulated in a wide range of cancers-glioma, breast, lung, esophageal, gastric, colorectal, urinary bladder, prostate, cervical, ovarian cancers and osteosarcoma-and promotes cancer progression; its depletion leads to the suppression of proliferation, invasion, and migration of cancer cells. It has been demonstrated that the suppression or inhibition of GGCT has an antitumor effect in cancer-bearing xenograft mice. Based on these observations, GGCT is now recognized as a promising therapeutic target in various cancers. This review summarizes recent advances on the mechanisms of the antitumor activity of GGCT inhibition.


Assuntos
Alanina/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , gama-Glutamilciclotransferase/antagonistas & inibidores , Alanina/análogos & derivados , Inibidores Enzimáticos/química , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Neoplasias/enzimologia , Neoplasias/genética , Interferência de RNA , gama-Glutamilciclotransferase/genética , gama-Glutamilciclotransferase/metabolismo
9.
Adv Exp Med Biol ; 962: 299-320, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28299665

RESUMO

All RUNX genes have been implicated in the development of solid tumors, but the role each RUNX gene plays in the different tumor types is complicated by multiple interactions with major signaling pathways and tumor heterogeneity. Moreover, for a given tissue type, the specific role of each RUNX protein is distinct at different stages of differentiation. A regulatory function for RUNX in tissue stem cells points sharply to a causal effect in tumorigenesis. Understanding how RUNX dysregulation in cancer impinges on normal biological processes is important for identifying the molecular mechanisms that lead to malignancy. It will also indicate whether restoration of proper RUNX function to redirect cell fate is a feasible treatment for cancer. With the recent advances in RUNX research, it is time to revisit the many mechanisms/pathways that RUNX engage to regulate cell fate and decide whether cells proliferate, differentiate or die.


Assuntos
Subunidades alfa de Fatores de Ligação ao Core/genética , Subunidades alfa de Fatores de Ligação ao Core/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Animais , Carcinogênese/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Humanos , Neoplasias/patologia , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Cancer Sci ; 105(4): 418-24, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24447505

RESUMO

RUNX3 is a tumor suppressor for a variety of cancers. RUNX3 suppresses the canonical Wnt signaling pathway by binding to the TCF4/ß-catenin complex, resulting in the inhibition of binding of the complex to the Wnt target gene promoter. Here, we confirmed that RUNX3 suppressed Wnt signaling activity in several gastric cancer cell lines; however, we found that RUNX3 increased the Wnt signaling activity in KatoIII and SNU668 gastric cancer cells. Notably, RUNX3 expression increased the ratio of the Wnt signaling-high population in the KatoIII cells. although the maximum Wnt activation level of individual cells was similar to that in the control. As found previously, RUNX3 also binds to TCF4 and ß-catenin in KatoIII cells, suggesting that these molecules form a ternary complex. Moreover, the ChIP analyses revealed that TCF4, ß-catenin and RUNX3 bind the promoter region of the Wnt target genes, Axin2 and c-Myc, and the occupancy of TCF4 and ß-catenin in these promoter regions is increased by the RUNX3 expression. These results suggest that RUNX3 stabilizes the TCF4/ß-catenin complex on the Wnt target gene promoter in KatoIII cells, leading to activation of Wnt signaling. Although RUNX3 increased the Wnt signaling activity, its expression resulted in suppression of tumorigenesis of KatoIII cells, indicating that RUNX3 plays a tumor-suppressing role in KatoIII cells through a Wnt-independent mechanism. These results indicate that RUNX3 can either suppress or activate the Wnt signaling pathway through its binding to the TCF4/ß-catenin complex by cell context-dependent mechanisms.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/genética , Neoplasias Gástricas/genética , Ativação Transcricional , Via de Sinalização Wnt/genética , Proteína Axina/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular Tumoral , Subunidade alfa 3 de Fator de Ligação ao Core/biossíntese , Regulação Neoplásica da Expressão Gênica , Humanos , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/terapia , Fator de Transcrição 4 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
11.
PLoS One ; 19(4): e0300548, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578740

RESUMO

Biomechanical cue within the tissue microenvironment is known to play a critical role in regulating cell behaviors and maintaining tissue homeostasis. As hydrostatic pressure often increases in biliary system under pathological states, we investigated the effect of the moderate elevation of the hydrostatic pressure on biliary epithelial cells, especially on the epithelial-mesenchymal transition (EMT). Human intrahepatic biliary epithelial cells were loaded to hydrostatic pressure using a commercial device. We found that loading the cells to 50 mmHg hydrostatic pressure induced obvious morphological changes and significantly upregulated vimentin, ZEB1, and pSmad2/3, fibronectin, and collagen 1α. All changes induced by hydrostatic pressure loading were effectively mitigated by either ROCK inhibitor (Y-27632) or ALK5 inhibitor (SB-431542). Our in vitro experimental data suggests that hydrostatic pressure loading induces EMT of cholangiocytes through RhoA/ROCK and TGF-ß/Smad pathways. Elevated hydrostatic pressure in biliary duct system under pathological states may promote the biliary epithelial cells shifting to profibrotic and mesenchymal characteristics.


Assuntos
Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Pressão Hidrostática , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
12.
J Orthop Translat ; 47: 161-175, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027344

RESUMO

Background: Zinc finger-containing transcription factor Osterix/Specificity protein-7 (Sp7) is an essential transcription factor for osteoblast differentiation. However, its functions in differentiated osteoblasts remain unclear and the effects of osteoblast-specific Sp7 deletion on osteocytes have not been sufficiently studied. Methods: Sp7 floxneo/floxneo mice, in which Sp7 expression was 30 % of that in wild-type mice because of disturbed splicing by neo gene insertion, and osteoblast-specific knockout (Sp7 fl/fl;Col1a1-Cre) mice using 2.3-kb Col1a1 enhanced green fluorescent protein (EGFP)-Cre were examined by micro-computed tomography (micro-CT), bone histomorphometry, serum markers, and histological analyses. The expression of osteoblast and osteocyte marker genes was examined by real-time reverse transcription (RT)-PCR analysis. Osteoblastogenesis, osteoclastogenesis, and regulation of the expression of collagen type I alpha 1 chain (Col1a1) were examined in primary osteoblasts. Results: Femoral trabecular bone volume was higher in female Sp7 floxneo/floxneo and Sp7 fl/fl;Col1a1-Cre mice than in the respective controls, but not in males. Bromodeoxyuridine (BrdU)-positive osteoblastic cells were increased in male Sp7 fl/fl;Col1a1-Cre mice, and osteoblast number and the bone formation rate were increased in tibial trabecular bone in female Sp7 fl/fl;Col1a1-Cre mice, although osteoblast maturation was inhibited in female Sp7 fl/fl;Col1a1-Cre mice as shown by the increased expression of an immature osteoblast marker gene, secreted phosphoprotein 1 (Spp1), and reduced expression of a mature osteoblast marker gene, bone gamma-carboxyglutamate protein/bone gamma-carboxyglutamate protein 2 (Bglap/Bglap2). Furthermore, alkaline phosphatase activity was increased but mineralization was reduced in the culture of primary osteoblasts from Sp7 fl/fl;Col1a1-Cre mice. Therefore, the accumulated immature osteoblasts in Sp7 fl/fl;Col1a1-Cre mice was likely compensated for the inhibition of osteoblast maturation at different levels in males and females. Vertebral trabecular bone volume was lower in both male and female Sp7 fl/fl;Col1a1-Cre mice than in the controls and the osteoblast parameters and bone formation rate in females were lower in Sp7 fl/fl;Col1a1-Cre mice than in Sp7 fl/fl mice, suggesting differential regulatory mechanisms in long bones and vertebrae. The femoral cortical bone was thin and porous in Sp7 floxneo/floxneo and Sp7 fl/fl;Col1a1-Cre mice of both sexes, the number of canaliculi was reduced, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL)-positive lacunae and the osteoclasts were increased, whereas the bone formation rate was similar in Sp7 fl/fl;Col1a1-Cre and Sp7 fl/fl mice. The serum levels of total procollagen type 1 N-terminal propeptide (P1NP), a marker for bone formation, were similar, while those of tartrate-resistant acid phosphatase 5b (TRAP5b), a marker for bone resorption, were higher in Sp7 fl/fl;Col1a1-Cre mice. Osteoblasts were less cuboidal, the expression of Col1a1 and Col1a1-EGFP-Cre was lower in Sp7 fl/fl;Col1a1-Cre mice, and overexpression of Sp7 induced Col1a1 expression. Conclusions: Our studies indicated that Sp7 inhibits the proliferation of immature osteoblasts, induces osteoblast maturation and Col1a1 expression, and is required for osteocytes to acquire a sufficient number of processes for their survival, which prevents cortical porosity. The translational potential of this article: This study clarified the roles of Sp7 in differentiated osteoblasts in proliferarion, maturation, Col1a1 expression, and osteocyte process formation, which are required for targeting SP7 in the development of therapies for osteoporosis.

13.
Int J Cancer ; 132(6): 1260-71, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23180629

RESUMO

The Runt-related transcription factors (RUNX) belong to an ancient family of metazoan genes involved in developmental processes. Through multiple protein-interacting partners, RUNX proteins have been implicated in diverse signaling pathways and cellular processes. The frequent inactivation of RUNX genes in cancer indicates crucial roles for RUNX in tumor suppression. This review discusses the abilities of RUNX proteins, in particular RUNX3, to integrate oncogenic signals or environmental cues and to initiate appropriate tumor suppressive responses.


Assuntos
Subunidades alfa de Fatores de Ligação ao Core/fisiologia , Neoplasias/etiologia , Animais , Ciclo Celular , Subunidade alfa 2 de Fator de Ligação ao Core/análise , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Subunidade alfa 3 de Fator de Ligação ao Core/análise , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/fisiologia , Humanos , Mutação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/fisiologia , Serina-Treonina Quinase 3 , Transdução de Sinais/fisiologia , Transcrição Gênica , Fator de Crescimento Transformador beta/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Via de Sinalização Wnt/fisiologia
14.
Stem Cells ; 30(10): 2088-99, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22899304

RESUMO

The transcription factor RUNX3 functions as a tumor suppressor in the gastrointestinal epithelium, where its loss is an early event in carcinogenesis. While RUNX3 acts concurrently as a mediator of TGF-ß signaling and an antagonist of Wnt, the cellular changes that follow its loss and their contribution to tumorigenicity are not fully understood. Here, we report that the loss of Runx3 in gastric epithelial cells results in spontaneous epithelial-mesenchymal transition (EMT). This produces a tumorigenic stem cell-like subpopulation, which remarkably expresses the gastric stem cell marker Lgr5. This phenomenon is due to the compounding effects of the dysregulation of the TGF-ß and Wnt pathways. Specifically, Runx3(-/-) p53(-/-) gastric epithelial cells were unexpectedly sensitized for TGF-ß-induced EMT, during which the resultant induction of Lgr5 was enhanced by an aberrantly activated Wnt pathway. These data demonstrate a protective role for RUNX3 in safeguarding gastric epithelial cells against aberrant growth factor signaling and the resultant cellular plasticity and stemness.


Assuntos
Transformação Celular Neoplásica/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias Gastrointestinais/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transfecção , Fator de Crescimento Transformador beta/farmacologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
15.
J Immunol ; 186(11): 6515-20, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21515792

RESUMO

Inflammation is increasingly recognized as an essential component of tumorigenesis, which is promoted and suppressed by various T cell subsets acting in different ways. It was shown previously in Runx3-deficient mice that differentiation of CD8 T and NK cells is perturbed. In this study, we show that Runx3 is also required for proper differentiation and function of regulatory T cells. In Runx3-deficient mice, T cells were unable to inhibit inflammation and to suppress tumor development. As expected, recombination activating gene 2-deficient mice bearing Runx3-deficient lymphocytes spontaneously developed colon tumors. However, tumor formation was completely blocked by transfer of either regulatory T cells or CD8 T cells derived from wild-type mice to mutant mice or by housing mutant mice in a specific pathogen-free condition. These results indicate that Runx3-deficient lymphocytes and microorganisms act together to induce inflammation and consequently induce the development of colon tumors.


Assuntos
Colite/imunologia , Neoplasias do Colo/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/imunologia , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/imunologia , Colite/genética , Colite/metabolismo , Colo/imunologia , Colo/metabolismo , Colo/microbiologia , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/deficiência , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Feminino , Citometria de Fluxo , Gastrite/genética , Gastrite/imunologia , Gastrite/metabolismo , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo
16.
Cells ; 12(8)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37190031

RESUMO

The RUNX transcription factors are frequently dysregulated in human cancers, suggesting their potential as attractive targets for drug treatment. However, all three transcription factors have been described as both tumor suppressors and oncogenes, indicating the need to determine their molecular mechanisms of action. Although RUNX3 has long been considered a tumor suppressor in human cancers, several recent studies have shown that RUNX3 is upregulated during the development or progression of various malignant tumors, suggesting it may act as a "conditional" oncogene. Resolving this paradox and understanding how a single gene can exhibit both oncogenic and tumor-suppressive properties is essential for successful drug targeting of RUNX. This review describes the evidence for the activities of RUNX3 in human cancer and proposes an explanation for the duality of RUNX3 involving the status of p53. In this model, p53 deficiency causes RUNX3 to become oncogenic, leading to aberrant upregulation of MYC.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Fatores de Transcrição/genética , Oncogenes , Neoplasias/genética
17.
Front Endocrinol (Lausanne) ; 14: 1181204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229448

RESUMO

Bone contributes to the maintenance of vital biological activities. At the cellular level, multiple types of skeletal cells, including skeletal stem and progenitor cells (SSPCs), osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, orchestrate skeletal events such as development, aging, regeneration, and tumorigenesis. Osteosarcoma (OS) is a primary malignant tumor and the main form of bone cancer. Although it has been proposed that the cellular origins of OS are in osteogenesis-related skeletal lineage cells with cancer suppressor gene mutations, its origins have not yet been fully elucidated because of a poor understanding of whole skeletal cell diversity and dynamics. Over the past decade, the advent and development of single-cell RNA sequencing analyses and mouse lineage-tracing approaches have revealed the diversity of skeletal stem and its lineage cells. Skeletal stem cells (SSCs) in the bone marrow endoskeletal region have now been found to efficiently generate OS and to be robust cells of origin under p53 deletion conditions. The identification of SSCs may lead to a more limited redefinition of bone marrow mesenchymal stem/stromal cells (BM-MSCs), and this population has been thought to contain cells from which OS originates. In this mini-review, we discuss the cellular diversity and dynamics of multiple skeletal cell types and the origin of OS in the native in vivo environment in mice. We also discuss future challenges in the study of skeletal cells and OS.


Assuntos
Neoplasias Ósseas , Células-Tronco Mesenquimais , Osteossarcoma , Animais , Camundongos , Osteossarcoma/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco/metabolismo , Osteoblastos/metabolismo , Neoplasias Ósseas/patologia
18.
J Prosthodont Res ; 67(3): 487-492, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36031348

RESUMO

PATIENTS: This clinical report describes the process for fabricating a double-crown-retained removable dental prosthesis combining a fiber-reinforced composite and zirconia using digital technology. An 83-year-old woman presented with gingival swelling around the maxillary right premolar. The swollen tooth was the abutment tooth of a cross-arch fixed partial denture. An intraoral scanner (IOS) and computer-aided design/manufacturing as digital technology were used to plan treatment with a double-crown-retained removable dental prosthesis. A metal-free prosthesis using zirconia for the primary crown and fiberglass-reinforced composite resin for the secondary crown was planned, and the patient consented to the treatment plan. After autotransplantation of a tooth as one of the abutments, the IOS was used to obtain digital scans of the prepared surface of the abutment teeth, opposing dentition, and occlusal relationships. First, primary crowns were milled using zirconia. Next, the intraoral scanner obtained a pick-up impression of the primary crowns, and secondary crowns were designed and milled from the fiber-reinforced composite. After delivery, the patient expressed satisfaction with the functionality, esthetics, and fit of the double-crown-retained removable dental prosthesis. DISCUSSION: Digital technology offers many advantages such as efficient fabrication of double crowns, reduced material costs, improved biocompatibility, and good aesthetics of metal-free materials. CONCLUSIONS: This clinical report describes the application of digital technology for the fabrication of a double-crown-retained removable dental prosthesis combining a fiber-reinforced composite and zirconia, resulting in patient satisfaction.


Assuntos
Planejamento de Prótese Dentária , Tecnologia Digital , Feminino , Humanos , Idoso de 80 Anos ou mais , Planejamento de Prótese Dentária/métodos , Zircônio , Coroas , Desenho Assistido por Computador , Porcelana Dentária
19.
Int J Prosthodont ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37273184

RESUMO

INTRODUCTION: The purpose of this study was to clarify the influence of clenching strength on interocclusal registration using intraoral scanner (IOS). METHODS: Subjects were eight volunteers. Two experimental conditions were light clenching (LC) and 40% maximum voluntary clenching (MVC). The conventional silicone bite registration and IOS were used for comparison. Occlusal contact areas (OCA) for different clenching strengths were compared, along with variation of measured values (VMV) between recording methods. RESULTS: Significant differences were observed between conditions on OCA and between methods on VMV. CONCLUSION: Clenching strength influenced interocclusal registration using IOS. Int J Prosthodont. 10.11607/ijp.8445.

20.
Oncogene ; 42(33): 2485-2494, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37402881

RESUMO

Osteosarcoma (OS) is characterized by TP53 mutations in humans. In mice, loss of p53 triggers OS development, and osteoprogenitor-specific p53-deleted mice are widely used to study the process of osteosarcomagenesis. However, the molecular mechanisms underlying the initiation or progression of OS following or parallel to p53 inactivation remain largely unknown. Here, we examined the role of transcription factors involved in adipogenesis (adipo-TFs) in p53-deficient OS and identified a novel tumor suppressive molecular mechanism mediated by C/ebpα. C/ebpα specifically interacts with Runx3, a p53 deficiency-dependent oncogene, and, in the same manner as p53, decreases the activity of the oncogenic axis of OS, Runx3-Myc, by inhibiting Runx3 DNA binding. The identification of a novel molecular role for C/ebpα in p53-deficient osteosarcomagenesis underscores the importance of the Runx-Myc oncogenic axis as a therapeutic target for OS.


Assuntos
Neoplasias Ósseas , Proteína alfa Estimuladora de Ligação a CCAAT , Osteossarcoma , Animais , Humanos , Camundongos , Neoplasias Ósseas/genética , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Osteossarcoma/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA