Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Plant Res ; 137(3): 395-409, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38436743

RESUMO

The Chilean Puya species, Puya coerulea var. violacea and P. chilensis bear blue and pale-yellow flowers, respectively, while P. alpestris considered to be their hybrid-derived species has unique turquoise flowers. In this study, the chemical basis underlying the different coloration of the three Puya species was explored. We first isolated and identified three anthocyanins: delphinidin 3,3',5'-tri-O-glucoside, delphinidin 3,3'-di-O-glucoside and delphinidin 3-O-glucoside; seven flavonols: quercetin 3-O-rutinoside-3'-O-glucoside, quercetin 3,3'-di-O-glucoside, quercetin 3-O-rutinoside, isorhamnetin 3-O-rutinoside, myricetin 3,3',5'-tri-O-glucoside, myricetin 3,3'-di-O-glucoside and laricitrin 3,5'-di-O-glucoside; and six flavones: luteolin 4'-O-glucoside, apigenin 4'-O-glucoside, tricetin 4'-O-glucoside, tricetin 3',5'-di-O-glucoside, tricetin 3'-O-glucoside and selagin 5'-O-glucoside, which is a previously undescribed flavone, from their petals. We also compared compositions of floral flavonoid and their aglycone among these species, which suggested that the turquoise species P. alpestris has an essentially intermediate composition between the blue and pale-yellow species. The vacuolar pH was relatively higher in the turquoise (pH 6.2) and pale-yellow (pH 6.2) flower species, while that of blue flower species was usual (pH 5.2). The flower color was reconstructed in vitro using isolated anthocyanin, flavonol and flavone at neutral and acidic pH, and its color was analyzed by reflectance spectra and the visual modeling of their avian pollinators. The modeling demonstrated that the higher pH of the turquoise and pale-yellow species enhances the chromatic contrast and spectral purity. The precise regulation of flower color by flavonoid composition and vacuolar pH may be adapted to the visual perception of their avian pollinator vision.


Assuntos
Antocianinas , Flores , Polinização , Flores/fisiologia , Flores/química , Antocianinas/metabolismo , Polinização/fisiologia , Animais , Pigmentação , Pigmentos Biológicos , Flavonas/química , Aves/fisiologia , Chile , Flavonóis , Flavonoides/metabolismo , Especificidade da Espécie
2.
Molecules ; 27(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364459

RESUMO

Twenty-two flavonoids were isolated from the leaves and stems of Sedum japonicum subsp. oryzifolium (Crassulaceae). Of these compounds, five flavonoids were reported in nature for the first time, and identified as herbacetin 3-O-xyloside-8-O-glucoside, herbacetin 3-O-glucoside-8-O-(2'''-acetylxyloside), gossypetin 3-O-glucoside-8-O-arabinoside, gossypetin 3-O-glucoside-8-O-(2'''-acetylxyloside) and hibiscetin 3-O-glucoside-8-O-arabinoside via UV, HR-MS, LC-MS, acid hydrolysis and NMR. Other seventeen known flavonoids were identified as herbacetin 3-O-glucoside-8-O-arabinoside, herbacetin 3-O-glucoside-8-O-xyloside, gossypetin 3-O-glucoside-8-O-xyloside, quercetin, quercetin 3-O-glucoside, quercetin 3-O-xylosyl-(1→2)-rhamnoside-7-O-rhamnoside, quercetin 3-O-rhamnoside-7-O-glucoside, kaempferol, kaempferol 3-O-glucoside, kaempferol 7-O-rhamnoside, kaempferol 3,7-di-O-rhamnoside, kaempferol 3-O-glucoside-7-O-rhamnoside, kaempferol 3-O-glucosyl-(1→2)-rhamnoside-7-O-rhamnoside, kaempferol 3-O-xylosyl-(1→2)-rhamnoside, kaempferol 3-O-xylosyl-(1→2)-rhamnoside-7-O-rhamnoside, myricetin 3-O-glucoside and cyanidin 3-O-glucoside. Some flavonol 3,8-di-O-glycosides were found in Sedum japonicum subsp. oryzifolium as major flavonoids in this survey. They were presumed to be the diagnostic flavonoids in the species. Flavonoids were reported from S. japonicum for the first time.


Assuntos
Crassulaceae , Sedum , Quempferóis , Quercetina/química , Flavonoides/química , Glucosídeos/química , Glicosídeos/química
3.
Am J Bot ; 104(9): 1390-1406, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-29885241

RESUMO

PREMISE OF THE STUDY: Delimitation of cryptic species provides an understanding of biodiversity and opportunities to elucidate speciation processes. Extensive flavonoid variation has been reported in the tetraploid cytotype of the fern, Asplenium normale, although related species have no intraspecific variations in flavonoid composition. We hypothesized that Japanese A. normale still harbors multiple cryptic species with different flavonoid compositions, and tested this hypothesis using chemotaxonomic and multilocus genotyping approaches. METHODS: We determined the multilocus genotypes (MLGs) of 230 samples from 37 populations for one chloroplast DNA region and three nuclear genes. MLGs were used to delimit reproductively isolated lineages by population-genetic approaches. We also tested the correspondence between genetically recognized groups and flavonoid compositions. To identify the origins of putative cryptic species, we conducted phylogenetic analysis of the DNA markers used in genotyping. KEY RESULTS: The genetic clusters and flavonoid compositions showed clear correspondence. We recognized three putative cryptic species in tetraploid Asplenium normale in Japan. Phylogenetic analyses revealed that cryptic species I and III originated from allopolyploidization between a diploid A. normale and an unknown diploid of A. boreale, and cryptic species II originated from allopolyploidization between a diploid A. normale and A. oligophlebium. CONCLUSIONS: Our study demonstrated that intraspecific variation of secondary metabolites can be a good indicator of cryptic species in ferns. The presence of the two cryptic species having the same progenitor diploid pair suggests that speciation between allopolyploid lineages of independent origin may be more common than previously considered.


Assuntos
Gleiquênias/genética , Especiação Genética , Tetraploidia , DNA de Cloroplastos/análise , Gleiquênias/química , Flavonoides/análise , Filogenia
4.
J Plant Res ; 130(2): 301-310, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28091760

RESUMO

We discovered that some tree species have leaves whose adaxial sides show bright green-blue fluorescence upon exposure to ultraviolet irradiation. In total, 141 native Japanese species belonging to 47 families were analyzed, and the brightness of the leaf fluorescence, represented by the L* values (Lab color space) of the pictures, was evaluated. The species possessing the brightest fluorescent leaves, with L* > 50, were Camellia japonica, Camellia sasanqua, and Cleyera japonica of Theaceae, Osmanthus heterophyllus and Ligustrum japonicum of Oleaceae, Aucuba japonica of Garryaceae, and Trochodendron aralioides of Trochodendraceae. These species are propagated by pollination or seed dispersion by birds, except T. aralioides. The fluorescence was specifically observed in the cuticle tissues of the epidermal cells, indicating that the fluorescence is a signal to other organisms that can perceive the fluorescence under natural light. Species possessing the bright leaves represented 5% of the total species tested, while species possessing dark leaves, with L* ≤ 40, represented 88.6%. We deduce that the fluorescence enables the organisms to easily distinguish the minority species possessing bright leaves from the surrounding plants, which were mostly trees species with dark leaves. The structure of A. japonica var. borealis, in which dark leaves only surround its fruits while the rest of the tree is covered by bright leaves, may be useful to signal the presence of fruits to the organisms. We hypothesize that the fluorescence contributes to the propagation of the tree species by helping birds to distinguish these particular trees and/or locate the fruits.


Assuntos
Fluorescência , Folhas de Planta , Árvores , Japão , Especificidade da Espécie , Espectrometria de Fluorescência
5.
Plant Mol Biol ; 92(4-5): 445-456, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27561783

RESUMO

KEY MESSAGE: Flavonoids are important secondary metabolites in plants. Sugar-sugar glycosyltransferases are involved in the final step of flavonoid biosynthesis and contribute to the structural diversity of flavonoids. This manuscript describes the first cloning of a sugar-sugar glucosyltransferase gene in the UGT family that attaches glucose to the 6″-position of sugar bound to a flavonol. The results provide a glimpse on the possible evolution of sugar-sugar glycosyltransferase genes and identify putative amino acids responsible for the recognition of the hydroxyl group of the sugar moiety and specification of sugar. A scheme for the genetic control of flavonol glycoside biosynthesis is proposed. Flavonol glycosides (FGs) are predominant in soybean leaves and they show substantial differences among genotypes. In previous studies, we identified two flavonoid glycoside glycosyltransferase genes that segregated in recombinant inbred lines developed from a cross between cultivars Nezumisaya and Harosoy; one was responsible for the attachment of glucose to the 2″-position of glucose or galactose that is bound to the 3-position of kaempferol and the other was involved in the attachment of glucose to the 6″-position. This study was conducted to clone and characterize the 6″-glucosyltransferase gene. Linkage mapping indicated that the gene was located in the molecular linkage group I (chromosome 20). Based on the genome sequence, we cloned a candidate cDNA, GmF3G6"Gt from Harosoy but the corresponding cDNA could not be amplified by PCR from Nezumisaya. The coding region of GmF3G6″Gt in Harosoy is 1386 bp long encoding 462 amino acids. This gene was not expressed in leaves of Nezumisaya. The GmF3G6″Gt recombinant protein converted UDP-glucose and kaempferol 3-O-glucoside or kaempferol 3-O-galactoside to kaempferol 3-O-glucosyl-(1→6)-glucoside or kaempferol 3-O-glucosyl-(1→6)-galactoside, respectively. These results indicate that GmF3G6″Gt encodes a flavonol 3-O-glucoside/galactoside (1→6) glucosyltransferase and corresponds to the Fg1 gene. GmF3G6″Gt had an amino acid similarity of 82 % with GmF3G6″Rt encoding flavonol 3-O-glucoside/galactoside (1→6) rhamnosyltransferase, suggesting a recent evolutionary divergence of the two genes. This may be the first cloning of a sugar-sugar glucosyltransferase gene in the UGT family that attaches glucose to the 6″-position of sugar bound to a flavonol. A scheme for the control of FG biosynthesis is proposed.


Assuntos
Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glycine max/enzimologia , Glycine max/genética , Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
BMC Plant Biol ; 15: 126, 2015 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-26002063

RESUMO

BACKGROUND: Flavonol glycosides (FGs) are major components of soybean leaves and there are substantial differences in FG composition among genotypes. The first objective of this study was to identify genes responsible for FG biosynthesis and to locate them in the soybean genome. The second objective was to clone the candidate genes and to verify their function. Recombinant inbred lines (RILs) were developed from a cross between cultivars Nezumisaya and Harosoy. RESULTS: HPLC comparison with authentic samples suggested that FGs having glucose at the 2″-position of glucose or galactose that is bound to the 3-position of kaempferol were present in Nezumisaya, whereas FGs of Harosoy were devoid of 2″-glucose. Conversely, FGs having glucose at the 6″-position of glucose or galactose that is bound to the 3-position of kaempferol were present in Harosoy, whereas these FGs were absent in Nezumisaya. Genetic analysis suggested that two genes control the pattern of attachment of these sugar moieties in FGs. One of the genes may be responsible for attachment of glucose to the 2″-position, probably encoding for a flavonol 3-O-glucoside/galactoside (1 → 2) glucosyltransferase. Nezumisaya may have a dominant whereas Harosoy may have a recessive allele of the gene. Based on SSR analysis, linkage mapping and genome database survey, we cloned a candidate gene designated as GmF3G2″Gt in the molecular linkage group C2 (chromosome 6). The open reading frame of GmF3G2″Gt is 1380 bp long encoding 459 amino acids with four amino acid substitutions among the cultivars. The GmF3G2″Gt recombinant protein converted kaempferol 3-O-glucoside to kaempferol 3-O-sophoroside. GmF3G2″Gt of Nezumisaya showed a broad activity for kaempferol/quercetin 3-O-glucoside/galactoside derivatives but it did not glucosylate kaempferol 3-O-rhamnosyl-(1 → 4)-[rhamnosyl-(1 → 6)-glucoside] and 3-O-rhamnosyl-(1 → 4)-[glucosyl-(1 → 6)-glucoside]. CONCLUSION: GmF3G2″Gt encodes a flavonol 3-O-glucoside/galactoside (1 → 2) glucosyltransferase and corresponds to the Fg3 gene. GmF3G2″Gt was designated as UGT79B30 by the UGT Nomenclature Committee. Based on substrate specificity of GmF3G2″Gt, 2″-glucosylation of flavonol 3-O-glycoside may be irreconcilable with 4″-glycosylation in soybean leaves.


Assuntos
Mapeamento Cromossômico/métodos , Clonagem Molecular/métodos , Flavonóis/metabolismo , Genes de Plantas , Glucosiltransferases/genética , Glycine max/genética , Glicosídeos/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Flavonóis/análise , Flavonóis/química , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Glicosídeos/análise , Glicosídeos/química , Endogamia , Padrões de Herança/genética , Dados de Sequência Molecular , Filogenia , Polimorfismo Genético , Recombinação Genética/genética , Especificidade por Substrato
7.
Plant Mol Biol ; 84(3): 287-300, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24072327

RESUMO

There are substantial genotypic differences in the levels of flavonol glycosides (FGs) in soybean leaves. The first objective of this study was to identify and locate genes responsible for FG biosynthesis in the soybean genome. The second objective was to clone and verify the function of these candidate genes. Recombinant inbred lines (RILs) were developed by crossing the Kitakomachi and Koganejiro cultivars. The FGs were separated by high performance liquid chromatography (HPLC) and identified. The FGs of Koganejiro had rhamnose at the 6″-position of the glucose or galactose bound to the 3-position of kaempferol, whereas FGs of Kitakomachi were devoid of rhamnose. Among the 94 RILs, 53 RILs had HPLC peaks classified as Koganejiro type, and 41 RILs had peaks classified as Kitakomachi type. The segregation fitted a 1:1 ratio, suggesting that a single gene controls FG composition. SSR analysis, linkage mapping and genome database survey revealed a candidate gene in the molecular linkage group O (chromosome 10). The coding region of the gene from Koganejiro, designated as GmF3G6″Rt-a, is 1,392 bp long and encodes 464 amino acids, whereas the gene of Kitakomachi, GmF3G6″Rt-b, has a two-base deletion resulting in a truncated polypeptide consisting of 314 amino acids. The recombinant GmF3G6″Rt-a protein converted kaempferol 3-O-glucoside to kaempferol 3-O-rutinoside and utilized 3-O-glucosylated/galactosylated flavonols and UDP-rhamnose as substrates. GmF3G6″Rt-b protein had no activity. These results indicate that GmF3G6″Rt encodes a flavonol 3-O-glucoside (1 â†’ 6) rhamnosyltransferase and it probably corresponds to the Fg2 gene. GmF3G6″Rt was designated as UGT79A6 by the UGT Nomenclature Committee.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Glycine max/genética , Hexosiltransferases/genética , Proteínas de Soja/genética , Sequência de Aminoácidos , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Primers do DNA , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Hexosiltransferases/química , Hexosiltransferases/isolamento & purificação , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Homologia de Sequência de Aminoácidos , Proteínas de Soja/química , Proteínas de Soja/isolamento & purificação
8.
BMC Plant Biol ; 14: 58, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24602314

RESUMO

BACKGROUND: Flower color of soybean is primarily controlled by six genes, viz., W1, W2, W3, W4, Wm and Wp. This study was conducted to investigate the genetic and chemical basis of newly-identified flower color variants including two soybean mutant lines, 222-A-3 (near white flower) and E30-D-1 (light purple flower), a near-isogenic line (Clark-w4), flower color variants (T321 and T369) descended from the w4-mutable line and kw4 (near white flower, Glycine soja). RESULTS: Complementation tests revealed that the flower color of 222-A-3 and kw4 was controlled by the recessive allele (w4) of the W4 locus encoding dihydroflavonol 4-reductase 2 (DFR2). In 222-A-3, a single base was deleted in the first exon resulting in a truncated polypeptide consisting of 24 amino acids. In Clark-w4, base substitution of the first nucleotide of the fourth intron abolished the 5' splice site, resulting in the retention of the intron. The DFR2 gene of kw4 was not expressed. The above results suggest that complete loss-of-function of DFR2 gene leads to near white flowers. Light purple flower of E30-D-1 was controlled by a new allele at the W4 locus, w4-lp. The gene symbol was approved by the Soybean Genetics Committee. In E30-D-1, a single-base substitution changed an amino acid at position 39 from arginine to histidine. Pale flowers of T369 had higher expression levels of the DFR2 gene. These flower petals contained unique dihydroflavonols that have not yet been reported to occur in soybean and G. soja. CONCLUSIONS: Complete loss-of-function of DFR2 gene leads to near white flowers. A new allele of the W4 locus, w4-lp regulates light purple flowers. Single amino acid substitution was associated with light purple flowers. Flower petals of T369 had higher levels of DFR2 gene expression and contained unique dihydroflavonols that are absent in soybean and G. soja. Thus, mutants of the DFR2 gene have unique flavonoid compositions and display a wide variety of flower color patterns in soybean, from near white, light purple, dilute purple to pale.


Assuntos
Oxirredutases do Álcool/metabolismo , Flores/enzimologia , Flores/genética , Glycine max/enzimologia , Glycine max/genética , Proteínas de Plantas/metabolismo , Oxirredutases do Álcool/genética , Alelos , Flores/metabolismo , Pigmentação/genética , Pigmentação/fisiologia , Proteínas de Plantas/genética , Glycine max/metabolismo
9.
Fitoterapia ; 177: 106020, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38848979

RESUMO

Twenty flavonoids (1-20) were isolated from the leaves and stems of Sedum japonicum var. senanense endemic to Japan. Among them, nine compounds were reported in nature for the first time, and identified as herbacetin 3-O-neohesperidoside-8-O-(2‴-acetylxyloside) (2), gossypetin 8-O-(2″-acetylxyloside) (4), gossypetin 8-O-(3″-acetylxyloside) (5), gossypetin 3-O-glucoside-8-O-(3‴-acetylxyloside) (9), gossypetin 3-O-glucoside-8-O-(2‴,3‴-diacetylxyloside) (10), gossypetin 3-O-neohesperidoside-8-O-xyloside (11), gossypetin 3-O-neohesperidoside-8-O-(2⁗-acetylxyloside) (12), gossypetin 3-O-neohesperidoside-8-O-(3⁗-acetylxyloside) (13) and gossypetin 3-O-glucoside-8-O-xylofuranoside (14) by UV spectral survey, HR-MS, LC-MS, acid hydrolysis, NMR including 1H and 13C NMR, COSY, NOESY, HSQC and HMBC. Moreover, nine major flavonoids were surveyed for antioxidant activity by H-ORAC method. As the results, gossypetin 3-O-glucoside-8-O-(2‴-acetylxyoside) (8) showed the highest antioxidant activity. Conversely, gossypetin 3-O-neohesperidoside-8-O-xyloside (11) and gossypetin 3-O-neohesperidoside-8-O-(2⁗-acetylxyloside) (12) which attach neohesperidose showed the lowest values.

10.
Phytochemistry ; 203: 113367, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36002075

RESUMO

Forty-one flavones, each one of flavonol, chalcone and dihydroflavonol, two flavanones, and four phenylethanoids were isolated from corollas, calyces and leaves of two Aeschynanthus species, A. fulgens and A. pulcher, and six cultivars, 'Mahligai', 'Mona Lisa', SoeKa', 'Redona', 'Freshya' and 'Bravera'. Flavonoids were mainly the glucuronides and/or methylglucuronides based on hispidulin, nepetin, pectolinarigenin, 6-hydroxyluteolin, scutellarein, apigenin and luteolin, and identified by UV spectra, HR-MS, LC-MS, acid hydrolysis, NMR, and/or HPLC and TLC comparisons with authentic samples. Of these flavonoids, twelve, i.e. hispidulin 7,4'-di-O-glucuronide, 7,4'-di-O-methylglucuronide, 7-O-methylglucuronide-4'-O-glucuronide, 7-O-glucuronide-4'-O-methylglucuronide, 7-O-glucosyl-(1 â†’ 2)-glucuronide and 8-C-glucoside, nepetin 7,4'-di-O-glucuronide, 7-O-glucuronide-4'-O-methylglucuronide and 7-O-methylglucuronide-4'-O-glucuronide, pectolinarigenin 7-O-glucosyl-(1 â†’ 2)-glucuronide and 7-O-xylosyl-(1 â†’ 2)-(6″-malonylglucoside), and 6-hydroxyluteolin 7,4'-di-O-glucuronide, were previously undescribed.


Assuntos
Chalconas , Flavanonas , Flavonas , Lamiales , Apigenina , Flavanonas/análise , Flavonoides/química , Flavonóis/análise , Flores/química , Glucosídeos/análise , Glucuronídeos/análise , Luteolina/análise , Folhas de Planta/química
11.
Mol Vis ; 17: 1784-93, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21753864

RESUMO

PURPOSE: This study was conducted to investigate the effect of flavonoids, a major family of antioxidants contained in foods, on retinal ganglion cell (RGC) death induced by hypoxia, excessive glutamate levels, and oxidative stress. Moreover, to assess the structure-activity relationships of flavonoids, three types of flavonoids with different numbers of hydroxyl groups and varieties of sugar chains were studied. METHODS: Three kinds of flavonoids-nicotiflorin, rutin, and quercitrin-were used. The death of neonatal rat purified RGCs was induced by hypoxic conditions (5% O(2), 5% CO(2), 37 °C) for 12 h, 25 µM glutamate over three days, or oxidative stress by depleting antioxidants from the medium for 24 h. RGC survival rates were calculated under each condition and compared with vehicle cultures. Modification of cell death signaling after stress-induced apoptosis and necrosis by flavonoids was assessed using caspase-3 and calpain immunoreactivity assays. RESULTS: Under hypoxic and glutamate stress, both nicotiflorin and rutin significantly increased the RGC survival rate at 1 nM or higher, while quercitrin increased it at 100 nM or higher. Under oxidative stress, nicotiflorin, rutin, and quercitrin also significantly increased the RGC survival rate at 1 nM, 0.1 nM, and 100 nM or higher, respectively. Rutin significantly inhibited the induction of caspase-3 under both hypoxia and excessive glutamate stress, as well as blocking the induction of calpain during oxidative stress. CONCLUSIONS: Nicotiflorin and rutin showed neuroprotective effects on hypoxia-, glutamate- or oxidative stress-induced RGC death at concentrations of 1 nM or higher. The presence of a specific sugar side chain (rutinoside) may enhance neuroprotective activity.


Assuntos
Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Flavonoides/farmacologia , Fármacos Neuroprotetores/farmacologia , Fenóis/farmacologia , Quercetina/farmacologia , Células Ganglionares da Retina/efeitos dos fármacos , Rutina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Calpaína/antagonistas & inibidores , Calpaína/biossíntese , Caspase 3/biossíntese , Inibidores de Caspase , Técnicas de Cultura de Células , Relação Dose-Resposta a Droga , Ácido Glutâmico/efeitos adversos , Hipóxia/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia , Relação Estrutura-Atividade
12.
Biosci Biotechnol Biochem ; 75(10): 2046-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21979089

RESUMO

A new tetraglycosyl flavonol, 3-O-[2-O-xylosyl-6-O-(3-O-glucosyl-rhamnosyl) glucosyl] kaempferol was isolated from pale purplish-pink petals of Wabisuke camellia cv. Tarokaja with three known flavonols. It was named urakunoside after the species name of Tarokaja, Camellia uraku. Urakunoside was a major flavonol component in the Tarokaja petals, but was not detected in petals of Tarokaja's presumed ancestor species.


Assuntos
Camellia/química , Flores/química , Quempferóis/química , Quempferóis/isolamento & purificação , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Espectrofotometria Ultravioleta
13.
J Plant Res ; 124(1): 173-82, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20428921

RESUMO

Chilling tolerance is an important trait of soybeans [Glycine max (L.) Merr.] produced in cool climates. We previously isolated a soybean flavonoid 3' hydroxylase (F3'H) gene corresponding to the T locus, which controls pubescence and seed coat color. A genetic link between the T gene and chilling tolerance has been reported, although the exact underlying mechanisms remain unclear. Using the soybean near-isogenic lines (NILs) To7B (TT) and To7G (tt), we examined the relationship between chilling injury, antioxidant activity and flavonoid profiles associated with chilling treatment (15°C). Chilling injury was more severe in the second trifoliate leaves of To7G than in those of To7B. Hydrogen peroxide accumulation and lipid peroxidation were enhanced by chilling in To7G. Chilling-induced enhancement of antioxidant activity was more prominent in To7B than in To7G. High performance liquid chromatography analysis indicated that the contents of quercetin glycosides and isorhamnetin glycosides (3',4'-dihydroxylated flavonol derivatives) increase in the second trifoliate leaves of To7B after chilling treatment, whereas the same treatment increased kaempferol glycoside (4'-monohydroxylated flavonol derivatives) content in the corresponding leaves of To7G. Histochemical staining also demonstrated chilling-induced flavonoid accumulation. Microarray analysis and real-time reverse transcription-PCR demonstrated that the transcript levels of soybean F3'H are upregulated by chilling. The differences in chilling injury, antioxidant activity and flavonoid species between the two NILs support the notion that soybean F3'H affects chilling tolerance by increasing antioxidant activity via production of 3',4'-dihydroxylated flavonol derivatives.


Assuntos
Adaptação Fisiológica/genética , Antioxidantes/metabolismo , Temperatura Baixa , Flavonoides/metabolismo , Genes de Plantas/genética , Glycine max/genética , Pigmentação/genética , Cromatografia Líquida de Alta Pressão , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/genética , Extratos Vegetais/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Glycine max/citologia , Glycine max/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fatores de Tempo
14.
Phytochemistry ; 192: 112956, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34592514

RESUMO

Thirteen anthocyanins were isolated from the flowers of two Aeschynanthus species, A. fulgens and A. pulcher, and six cultivars, 'Mahligai', 'Mona Lisa', 'SoeKa', 'Redona', 'Freshya' and 'Bravera', and identified as pelargonidin and cyanidin 3-O-sambubiosides and their malonates, succinates, p-coumarates and caffeates, and pelargonidin 3-O-glucoside by acid hydrolysis, HR-MS and NMR. Of their anthocyanins, pelargonidin 3-O-[xylosyl-(1 â†’ 2)-(6''-malonylglucoside)] (2), pelargonidin 3-O-[xylosyl-(1 â†’ 2)-(6''-succinylglucoside)] (3), pelargonidin 3-O-[xylosyl-(1 â†’ 2)-(6''-E-p-coumaroylglucoside)] (4), pelargonidin 3-O-[xylosyl-(1 â†’ 2)-(6''-Z-p-coumaroylglucoside)] (5), pelargonidin 3-O-[xylosyl-(1 â†’ 2)-(6''-E-caffeoylglucoside)] (6) and cyanidin 3-O-[xylosyl-(1 â†’ 2)-(6''-succinylglucoside)] (9) were reported in nature for the first time.


Assuntos
Antocianinas , Flores , Dissacarídeos
15.
Phytochemistry ; 181: 112581, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33246305

RESUMO

To understand the unique green-blue color of Puya alpestris (Bromeliaceae) flowers, we investigated their constituent anthocyanin and related compounds. An anthocyanin, two undescribed flavonols, and two flavones were isolated and identified as delphinidin 3,3',5'-tri-O-ß-glucopyranoside, myricetin 3-O-[α-rhamnopyranosyl-(1 â†’ 6)-ß-glucopyranoside]-3',5'-di-O-ß-glucopyranoside, myricetin 3,3',5'-tri-O-ß-glucopyranoside, luteolin 4'-O-glucoside, and apigenin 4'-O-glucoside. Furthermore, the presence of chlorophyll has also been revealed. P. alpestris petals show a gradient color appearance: Green-blue at the tip and blue at the base. This color difference between the tip and base was used to analyze the pigment components underlying the green-blue color expression. It was found that the petal tip contains the anthocyanin, flavonols, flavones, and chlorophyll in high quantities. Furthermore, the pH of petal juice was 6.2 and 5.6 at the tip and base, respectively. In vitro reconstruction revealed the blue color expression occurred via an intermolecular copigmentation between the anthocyanin and flavones, as well as yellow color expression, which was due to an increase in the absorption at 400-450 nm of the flavonols under the higher pH conditions. Furthermore, we found that the petal extract obtaining using 50% acetone containing chlorophyll showed the same absorption spectrum as that observed for the raw petal. These results indicate that the green-blue color of P. alpestris flowers is developed via an intermolecular co-pigmentation of the anthocyanin (delphinidin 3,3',5'-tri-O-ß-glucopyranoside) with flavones, such as luteolin 4'-O-glucoside, the yellow color expression of flavonols, such as myricetin 3,3',5'-tri-O-glucoside under relatively high pH conditions in the cell sap, and the presence of chlorophyll.


Assuntos
Antocianinas , Bromeliaceae , Cor , Flavonoides , Flores
16.
Phytochemistry ; 189: 112827, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34146990

RESUMO

Two undescribed anthocyanins and two undescribed flavonols were isolated from the flowers of Primula ×polyantha Mill., along with five known anthocyanins and four known flavonols. The two undescribed anthocyanins and the two undescribed flavonols were determined to be hirsutidin 3-O-ß-galactopyranoside-5-O-ß-glucopyranoside, 7-O-methyl-petunidin 3-O-ß-galactopyranoside-5-O-ß-glucopyranoside, quercetin 3-O-ß-[(6""-acetylglucopyranosyl)-(1 â†’ 2)-ß-glucopyranosyl-(1 â†’ 6)-ß-glucopyranoside], and kaempferol 3-O-ß-[(6""-acetylglucopyranosyl)-(1 â†’ 2)-ß-glucopyranosyl-(1 â†’ 6)-ß-glucopyranoside] using chemical and spectroscopic methods. They were also found in the flowers of the Himalayan wild species, Primula primulina (Spreng.) H. Hara except for quercetin 3-O-ß-[(6""-acetylglucopyranosyl)-(1 â†’ 2)-ß-glucopyranosyl-(1 â†’ 6)-ß-glucopyranoside]. The flower color variations of P. ×polyantha cultivars, reflected by the hue values (b*/a*) of the colors, were due to the glycosidic patterns in the anthocyanins and their concentrations in the petals. Moreover, in the P. ×polyantha cultivars with violet-blue flowers, both the intermolecular copigmentation occurs between hirsutidin 3-O-ß-galactopyranoside-5-O-ß-glucopyranoside and another flavonol, quercetin 3-O-ß-glucopyranosyl-(1 â†’ 2)-ß-glucopyranosyl-(1 â†’ 6)-ß-glucopyranoside. Moreover, the flower color variation was affected by the pH value.


Assuntos
Primula , Primulaceae , Antocianinas , Flavonoides , Flores
17.
BMC Plant Biol ; 10: 155, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20663233

RESUMO

BACKGROUND: Glycine soja is a wild relative of soybean that has purple flowers. No flower color variant of Glycine soja has been found in the natural habitat. RESULTS: B09121, an accession with light purple flowers, was discovered in southern Japan. Genetic analysis revealed that the gene responsible for the light purple flowers was allelic to the W1 locus encoding flavonoid 3'5'-hydroxylase (F3'5'H). The new allele was designated as w1-lp. The dominance relationship of the locus was W1 >w1-lp >w1. One F2 plant and four F3 plants with purple flowers were generated in the cross between B09121 and a Clark near-isogenic line with w1 allele. Flower petals of B09121 contained lower amounts of four major anthocyanins (malvidin 3,5-di-O-glucoside, petunidin 3,5-di-O-glucoside, delphinidin 3,5-di-O-glucoside and delphinidin 3-O-glucoside) common in purple flowers and contained small amounts of the 5'-unsubstituted versions of the above anthocyanins, peonidin 3,5-di-O-glucoside, cyanidin 3,5-di-O-glucoside and cyanidin 3-O-glucoside, suggesting that F3'5'H activity was reduced and flavonoid 3'-hydroxylase activity was increased. F3'5'H cDNAs were cloned from Clark and B09121 by RT-PCR. The cDNA of B09121 had a unique base substitution resulting in the substitution of valine with methionine at amino acid position 210. The base substitution was ascertained by dCAPS analysis. The polymorphism associated with the dCAPS markers co-segregated with flower color in the F2 population. F3 progeny test, and dCAPS and indel analyses suggested that the plants with purple flowers might be due to intragenic recombination and that the 65 bp insertion responsible for gene dysfunction might have been eliminated in such plants. CONCLUSIONS: B09121 may be the first example of a flower color variant found in nature. The light purple flower was controlled by a new allele of the W1 locus encoding F3'5'H. The flower petals contained unique anthocyanins not found in soybean and G. soja. B09121 may be a useful tool for studies of the structural and functional properties of F3'5'H genes as well as investigations on the role of flower color in relation to adaptation of G. soja to natural habitats.


Assuntos
Antocianinas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/enzimologia , Glycine max/enzimologia , Antocianinas/análise , Flores/química , Flores/genética , Glucosídeos/análise , Glucosídeos/genética , Glucosídeos/metabolismo , Dados de Sequência Molecular , Pigmentos Biológicos/metabolismo , Glycine max/química , Glycine max/genética
18.
Nat Prod Commun ; 11(1): 77-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26996024

RESUMO

Two major anthocyanins, cyanidin 3-O-glucoside and 3-O-rutinoside, were isolated from the black flowers of Cosmos atrosanguineus cultivar 'Choco Mocha', together with three minor anthocyanins, cyanidin 3-O-malonylglucoside, pelargonidin 3-O-glucoside and 3-O-rutinoside. A chalcone, butein 4'-O-glucoside and three minor flavanones were isolated from the red flowers of C. atrosanguineis x C. sulphureus cultivar 'Rouge Rouge'. The anthocyanins and chalcone accumulation of cultivar 'Choco Mocha' and its hybrid cultivars 'Brown Rouge', 'Forte Rouge', 'Rouge Rouge' and 'Noel Rouge' was surveyed by quantitative HPLC. Total anthocyanins of black flower cultivars 'Choco Mocha' and 'Brown Rouge' were 3-4-folds higher than that of the red flower cultivar 'Noel Rouge'. On the other hand, total chalcone of 'Noel Rouge' was 10-77-folds higher compared with those of other cultivars, 'Brown Rouge', 'Forte Rouge' and 'Rouge Rouge'. It was shown that the flower color variations from red to black of Chocolate Cosmos and its hybrids are due to the difference in the relative amounts of anthocyanins and chalcone.


Assuntos
Antocianinas/metabolismo , Asteraceae/metabolismo , Flores/metabolismo , Glucosídeos/metabolismo , Pigmentos Biológicos/metabolismo , Antocianinas/química , Asteraceae/química , Asteraceae/genética , Flores/química , Regulação da Expressão Gênica de Plantas , Glucosídeos/química , Hibridização Genética , Pigmentos Biológicos/química
19.
Nat Prod Commun ; 10(6): 1103-14, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26197560

RESUMO

The anthocyanin pigments are contained in the flowers, fruits, leaves and roots of almost plant species. On the other hand, distribution of the betacyanins are limited in eight families of the order Caryophyllales, i.e. Aizoaceae, Amaranthaceae, Basellaceae, Cactaceae, Didiereaceae, Nyctaginaceae, Phytolaccaceae and Portulacaceae. However, other flavonoids, i.e. flavones, C-glycosylflavones, flavonols, flavanones, dihydroflavonols, chalcones, aurones, and flavan and proanthocyanidins, are synthesized in betalain-containing families. In this review, distribution and properties of the flavonoids in eight betalain-containing families are described.


Assuntos
Betalaínas/química , Flavonoides/química , Plantas/metabolismo , Betalaínas/biossíntese , Flavonoides/biossíntese , Estrutura Molecular , Plantas/química , Plantas/classificação
20.
Nat Prod Commun ; 10(3): 529-44, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25924543

RESUMO

Flavonoids are one of the major pigments in higher plants, together with chlorophylls and carotenoids. Though ca. 8,000 kinds of flavonoids have been reported in nature, anthocyanins, chalcones, aurones and some flavonols act as major flower pigments. Flavonoids are present as major components in many flowers. On the other hand, flavones and flavonols, which are colorless or extremely pale yellow, function as copigment substances. Moreover, expression of the flower colors is diversified by inter-molecular and intra-molecular copigmentation, metal chelation, pH change and so on. In this review, I describe the distribution of the flavonoids which act as the pigments, and contribution to flower colors, e.g., yellow, scarlet, red, red-purple, violet, purple, blue and so on, of flavonoids, especially anthocyanins, chalcones, aurones and flavonols.


Assuntos
Antocianinas/química , Flavonoides/química , Flores/química , Pigmentos Biológicos/química , Plantas/metabolismo , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA