Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Neurosci ; 41(12): 2780-2794, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33563722

RESUMO

Repetitive behavior is a widely observed neuropsychiatric symptom. Abnormal dopaminergic signaling in the striatum is one of the factors associated with behavioral repetition; however, the molecular mechanisms underlying the induction of repetitive behavior remain unclear. Here, we demonstrated that the NOX1 isoform of the superoxide-producing enzyme NADPH oxidase regulated repetitive behavior in mice by facilitating excitatory synaptic inputs in the central striatum (CS). In male C57Bl/6J mice, repeated stimulation of D2 receptors induced abnormal behavioral repetition and perseverative behavior. Nox1 deficiency or acute pharmacological inhibition of NOX1 significantly shortened repeated D2 receptor stimulation-induced repetitive behavior without affecting motor responses to a single D2 receptor stimulation. Among brain regions, Nox1 showed enriched expression in the striatum, and repeated dopamine D2 receptor stimulation further increased Nox1 expression levels in the CS, but not in the dorsal striatum. Electrophysiological analyses revealed that repeated D2 receptor stimulation facilitated excitatory inputs in the CS indirect pathway medium spiny neurons (iMSNs), and this effect was suppressed by the genetic deletion or pharmacological inhibition of NOX1. Nox1 deficiency potentiated protein tyrosine phosphatase activity and attenuated the accumulation of activated Src kinase, which is required for the synaptic potentiation in CS iMSNs. Inhibition of NOX1 or ß-arrestin in the CS was sufficient to ameliorate repetitive behavior. Striatal-specific Nox1 knockdown also ameliorated repetitive and perseverative behavior. Collectively, these results indicate that NOX1 acts as an enhancer of synaptic facilitation in CS iMSNs and plays a key role in the molecular link between abnormal dopamine signaling and behavioral repetition and perseveration.SIGNIFICANCE STATEMENT Behavioral repetition is a form of compulsivity, which is one of the core symptoms of psychiatric disorders, such as obsessive-compulsive disorder. Perseveration is also a hallmark of such disorders. Both clinical and animal studies suggest important roles of abnormal dopaminergic signaling and striatal hyperactivity in compulsivity; however, the precise molecular link between them remains unclear. Here, we demonstrated the contribution of NOX1 to behavioral repetition induced by repeated stimulation of D2 receptors. Repeated stimulation of D2 receptors upregulated Nox1 mRNA in a striatal subregion-specific manner. The upregulated NOX1 promoted striatal synaptic facilitation in iMSNs by enhancing phosphorylation signaling. These results provide a novel mechanism for D2 receptor-mediated excitatory synaptic facilitation and indicate the therapeutic potential of NOX1 inhibition in compulsivity.


Assuntos
Comportamento Compulsivo/metabolismo , Locomoção/fisiologia , NADPH Oxidase 1/biossíntese , NADPH Oxidases/biossíntese , Receptores de Dopamina D2/biossíntese , Sinapses/metabolismo , Animais , Células Cultivadas , Comportamento Compulsivo/induzido quimicamente , Comportamento Compulsivo/psicologia , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/toxicidade , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 1/antagonistas & inibidores , NADPH Oxidases/antagonistas & inibidores , Pirazolonas/farmacologia , Piridonas/farmacologia , Receptores de Dopamina D2/agonistas , Sinapses/efeitos dos fármacos
2.
Biochem Biophys Res Commun ; 534: 59-66, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310189

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by genetic and environmental factors. Among the environmental factors, maternal infection is known as one of the principal risk factors for ASD. On the other hand, postmortem studies suggested the relationship of oxidative stress with ASD etiology. However, the role of oxidative stress in the development of ASD remains unclear. Here, we report the involvement of NOX1/NADPH oxidase, an enzyme generating reactive oxygen species (ROS), in behavioral and anatomical abnormalities in a maternal immune activation (MIA) model. In the MIA model of gestational polyinosinic-polycytidylic acid (poly(I:C)) exposure, increased serum levels of IL-6 were observed in both wild-type (WT) and Nox1-deficient mice (Nox1KO). Following the comparable induction of MIA in the two genotypes, impairment of social preference and defects in motor coordination were observed in WT offspring but not in offspring deficient in Nox1. MIA up-regulated NOX1 mRNA in the cerebral cortex and cerebellum of the fetus but not in the adult offspring. Although the development of cortical neurons was unaffected by MIA in either genotype, the dropout of Purkinje cells in lobule VII of MIA-affected offspring was significantly ameliorated in Nox1KO. Taken together, these results suggested that NOX1/NADPH oxidase plays an essential role in some behavioral phenotypes observed in ASD, possibly by promoting the loss of Purkinje cells in the cerebellum.


Assuntos
Transtorno do Espectro Autista/etiologia , Comportamento Animal/fisiologia , NADPH Oxidase 1/genética , Células de Purkinje/patologia , Animais , Transtorno do Espectro Autista/imunologia , Cerebelo/embriologia , Córtex Cerebral/embriologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 1/metabolismo , Poli I-C/imunologia , Poli I-C/farmacologia , Gravidez
3.
J Pharmacol Sci ; 146(2): 88-97, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33941325

RESUMO

We investigate as yet an unidentified role of NOX1, a non-phagocytic isoform of the superoxide-generating NADPH oxidase, in immune responses using Nox1-knockout mice (Nox1-KO). The transcripts of NOX1 was expressed in lymphoid tissues, including the spleen, thymus, bone marrow, and inguinal lymphoid nodes. When antibody production after ovalbumin (OVA) immunization was examined, no significant differences were observed in serum anti-OVA IgG levels between wild-type mice (WT) and Nox1-KO. In the experimental asthma, the infiltration of eosinophils and the Th2 cytokine response after the induction of asthma with OVA were similar between the two genotypes. However, the severity and incidence of experimental collagen-induced arthritis (CIA) following the administration of a low dose of endotoxin (LPS) were significantly lower in Nox1-KO. While neither serum levels of autoantibodies nor in vitro cytokine responses were affected by Nox1 deficiency, NOX1 mRNA levels in the spleen significantly increased after the LPS challenge. Among the spleen cells, remarkable LPS-induced upregulation of NOX1 was demonstrated in both CD11b+ monocytes/macrophages and CD11c+ dendritic cells, suggesting that LPS-inducible NOX1 in monocytes/macrophages/dendritic cells may modulate the development of experimental CIA. Therapeutic targeting of NOX1 may therefore control the onset and/or severity of arthritis which is exacerbated by bacterial infection.


Assuntos
Artrite Experimental/etiologia , Colágeno/efeitos adversos , Endotoxinas/efeitos adversos , NADPH Oxidase 1/fisiologia , Animais , Células Cultivadas , Células Dendríticas , Progressão da Doença , Macrófagos , Masculino , Camundongos Knockout , Monócitos , NADPH Oxidase 1/genética , NADPH Oxidase 1/metabolismo , RNA Mensageiro/metabolismo , Baço/citologia , Baço/metabolismo
4.
Arch Toxicol ; 95(1): 135-148, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33034664

RESUMO

Clioquinol (5-chloro-7-indo-8-quinolinol), a chelator and ionophore of copper/zinc, was extensively used as an amebicide to treat indigestion and diarrhea in the mid-1900s. However, it was withdrawn from the market in Japan because its use was epidemiologically linked to an increase in the incidence of subacute myelo-optic neuropathy (SMON). SMON is characterized by the subacute onset of sensory and motor disturbances in the lower extremities with occasional visual impairments, which are preceded by abdominal symptoms. Although pathological studies demonstrated axonopathy of the spinal cord and optic nerves, the underlying mechanisms of clioquinol toxicity have not been elucidated in detail. In the present study, a reporter assay revealed that clioquinol (20-50 µM) activated metal response element-dependent transcription in human neuroblastoma SH-SY5Y cells. Clioquinol significantly increased the cellular level of zinc within 1 h, suggesting zinc influx due to its ionophore effects. On the other hand, clioquinol (20-50 µM) significantly increased the cellular level of copper within 24 h. Clioquinol (50 µM) induced the oxidation of the copper chaperone antioxidant 1 (ATOX1), suggesting its inactivation and inhibition of copper transport. The secretion of dopamine-ß-hydroxylase (DBH) and lysyl oxidase, both of which are copper-dependent enzymes, was altered by clioquinol (20-50 µM). Noradrenaline levels were reduced by clioquinol (20-50 µM). Disruption of the ATOX1 gene suppressed the secretion of DBH. This study suggested that the disturbance of cellular copper transport by the inactivation of ATOX1 is one of the mechanisms involved in clioquinol-induced neurotoxicity in SMON.


Assuntos
Clioquinol/toxicidade , Proteínas de Transporte de Cobre/metabolismo , Cobre/metabolismo , Dopamina beta-Hidroxilase/metabolismo , Chaperonas Moleculares/metabolismo , Neurônios/efeitos dos fármacos , Norepinefrina/biossíntese , Neuropatia Óptica Tóxica/etiologia , Linhagem Celular Tumoral , Proteínas de Transporte de Cobre/genética , Humanos , Chaperonas Moleculares/genética , Neurônios/enzimologia , Oxirredução , Proteína-Lisina 6-Oxidase/metabolismo , Via Secretória , Neuropatia Óptica Tóxica/enzimologia , Zinco/metabolismo
5.
J Neurosci ; 37(15): 4200-4212, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28314819

RESUMO

Involvement of reactive oxygen species (ROS) has been suggested in the development of psychiatric disorders. NOX1 is a nonphagocytic form of NADPH oxidase whose expression in the nervous system is negligible compared with other NOX isoforms. However, NOX1-derived ROS increase inflammatory pain and tolerance to opioid analgesia. To clarify the role of NOX1 in the brain, we examined depressive-like behaviors in mice deficient in Nox1 (Nox1-/Y). Depressive-like behaviors induced by chronic social defeat stress or administration of corticosterone (CORT) were significantly ameliorated in Nox1-/Y Generation of ROS was significantly elevated in the prefrontal cortex (PFC) of mice administrated with CORT, while NOX1 mRNA was upregulated only in the ventral tegmental area (VTA) among brain areas responsible for emotional behaviors. Delivery of miRNA against NOX1 to VTA restored CORT-induced depressive-like behaviors in wild-type (WT) littermates. Administration of CORT to WT, but not to Nox1-/Y, significantly reduced transcript levels of brain-derived neurotrophic factor (bdnf), with a concomitant increase in DNA methylation of the promoter regions in bdnf Delivery of miRNA against NOX1 to VTA restored the level of BDNF mRNA in WT PFC. Redox proteome analyses demonstrated that NMDA receptor 1 (NR1) was among the molecules redox regulated by NOX1. In cultured cortical neurons, hydrogen peroxide significantly suppressed NMDA-induced upregulation of BDNF transcripts in NR1-expressing cells but not in cells harboring mutant NR1 (C744A). Together, these findings suggest a key role of NOX1 in depressive-like behaviors through NR1-mediated epigenetic modification of bdnf in the mesoprefrontal projection.SIGNIFICANCE STATEMENT NADPH oxidase is a source of reactive oxygen species (ROS) that have been implicated in the pathogenesis of various neurological disorders. We presently showed the involvement of a nonphagocytic type of NADPH oxidase, NOX1, in major depressive disorders, including behavioral, biochemical, and anatomical changes in mice. The oxidation of NR1 by NOX1-derived ROS was demonstrated in prefrontal cortex (PFC), which may be causally linked to the downregulation of BDNF, promoting depressive-like behaviors. Given that NOX1 is upregulated only in VTA but not in PFC, mesocortical projections appear to play a crucial role in NOX1-dependent depressive-like behaviors. Our study is the first to present the potential molecular mechanism underlying the development of major depression through the NOX1-induced oxidation of NR1 and epigenetic modification of bdnf.


Assuntos
Transtorno Depressivo/metabolismo , NADH NADPH Oxirredutases/deficiência , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Transtorno Depressivo/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADH NADPH Oxirredutases/genética , NADPH Oxidase 1 , NADPH Oxidases/deficiência , Proteínas do Tecido Nervoso/genética , Oxirredução , Córtex Pré-Frontal , Receptores de N-Metil-D-Aspartato/genética
6.
J Pharmacol Exp Ther ; 360(1): 192-200, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27754929

RESUMO

NOX1/NADPH oxidase, a nonphagocytic isoform of reactive oxygen species-producing enzymes, is highly expressed in the colon, but the physiologic and pathophysiologic roles of this isoform are not fully understood. The present study investigated the role of NOX1 in the development of colonic inflammation in a trinitrobenzene sulfonic acid (TNBS)-induced murine colitis model. Intrarectal injection of TNBS caused severe colitis accompanied by body weight loss, diarrhea, and increased myeloperoxidase (MPO) activity in wild-type (WT) mice. In contrast, the severity of colitis was significantly attenuated in NOX1-deficient (NOX1KO) mice (the inhibitions of macroscopic damage score, body weight loss, diarrhea score, and MPO activity were 73.1%, 36.8%, 83.3%, and 98.4%, respectively). TNBS-induced upregulation of inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-1ß), chemokines (CXCL1 and CXLC2), and inducible nitric oxide synthase (iNOS) was also significantly less in NOX1KO than in WT mice (the inhibitions were 100.8%, 89.0%, 63.5%, 96.7%, and 97.1%, respectively). Expression of NOX1 mRNA was detected not only in the lamina propria but also in peritoneal macrophages isolated from WT mice. Increased expression of TNF-α, IL-1ß, and iNOS in peritoneal macrophages exposed to lipopolysaccharide was significantly attenuated in macrophages isolated from NOX1KO mice (68.1%, 67.0%, and 79.3% inhibition, respectively). These findings suggest that NOX1/NADPH oxidase plays an important role in the pathogenesis of TNBS-induced colonic inflammation via upregulation of inflammatory cytokines, chemokines, and iNOS. NOX1 in colonic macrophages may become a potential target in pharmacologic intervention for inflammatory bowel disease.


Assuntos
Colite/induzido quimicamente , Colite/enzimologia , Colo/imunologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , NADH NADPH Oxirredutases/genética , Ácido Trinitrobenzenossulfônico/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Colite/imunologia , Colite/metabolismo , Diarreia/complicações , Técnicas de Inativação de Genes , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , NADPH Oxidase 1 , Peroxidase/metabolismo , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos
7.
Arterioscler Thromb Vasc Biol ; 34(1): 110-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24233492

RESUMO

OBJECTIVE: Involvement of reactive oxygen species derived from nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase has been documented in the development of hypoxia-induced model of pulmonary arterial hypertension (PAH). Because the PAH-like phenotype was demonstrated in mice deficient in Nox1 gene (Nox1(-/Y)) raised under normoxia, the aim of this study was to clarify how the lack of NOX1/NADPH oxidase could lead to pulmonary pathology. APPROACH AND RESULTS: Spontaneous enlargement and hypertrophy of the right ventricle, accompanied by hypertrophy of pulmonary vessels, were demonstrated in Nox1(-/Y) 9 to 18 weeks old. Because an increased number of α-smooth muscle actin-positive vessels were observed in Nox1(-/Y), pulmonary arterial smooth muscle cells (PASMCs) were isolated and characterized by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. In Nox1(-/Y) PASMCs, the number of apoptotic cells was significantly reduced without any change in the expression of endothelin-1, and hypoxia-inducible factors HIF-1α and HIF-2α, factors implicated in the pathogenesis of PAH. A significant decrease in a voltage-dependent K(+) channel, Kv1.5 protein, and an increase in intracellular potassium levels were demonstrated in Nox1(-/Y) PASMCs. When a rescue study was performed in Nox1(-/Y) crossed with transgenic mice overexpressing rat Nox1 gene, impaired apoptosis and the level of Kv1.5 protein in PASMCs were almost completely recovered in Nox1(-/Y) harboring the Nox1 transgene. CONCLUSIONS: These findings suggest a critical role for NOX1 in cellular apoptosis by regulating Kv1.5 and intracellular potassium levels. Because dysfunction of Kv1.5 is among the features demonstrated in PAH, inactivation of NOX1/NADPH oxidase may be a causative factor for pulmonary vascular remodeling associated with PAH.


Assuntos
Hipertensão Pulmonar/enzimologia , NADH NADPH Oxirredutases/deficiência , Artéria Pulmonar/enzimologia , Actinas/metabolismo , Animais , Apoptose , Células Cultivadas , Modelos Animais de Doenças , Hipertensão Pulmonar Primária Familiar , Predisposição Genética para Doença , Hemodinâmica , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Hipertrofia , Hipertrofia Ventricular Direita/enzimologia , Hipertrofia Ventricular Direita/etiologia , Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , NADH NADPH Oxirredutases/genética , NADPH Oxidase 1 , Fenótipo , Potássio/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Interferência de RNA , Ratos , Transfecção
8.
J Pharmacol Sci ; 127(3): 370-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25837936

RESUMO

Although it has been reported that endotoxin-induced expression of Nox1 in the heart contributes to apoptosis in cardiomyocytes, functional role of Nox1 at the physiological expression level has not been elucidated. The aim of this study was to clarify the role of Nox1 under a hypoxic condition using wild-type (WT, Nox1(+/Y)) and Nox1-deficient (Nox1(-/Y)) mice. ECG recordings from anesthetized mice revealed that Nox1(-/Y) mice were more sensitive to hypoxia, resulting in bradycardia, compared to WT mice. Atrial and ventricular electrocardiograms recorded from Langendorff-perfused hearts revealed that hypoxic perfusion more rapidly decreased heart rate in Nox1(-/Y) hearts compared with WT hearts. Sinus node recovery times measured under a hypoxic condition were prolonged more markedly in the Nox1(-/Y) hearts. Sinoatrial node dysfunction of Nox1(-/Y) hearts during hypoxia was ameriolated by the pre-treatment with the Ca(2+) channel blocker nifedipine or the K(+) channel opener pinacidil. Spontaneous action potentials were recorded from enzymatically-isolated sinoatrial node (SAN) cells under a hypoxic condition. There was no significant difference in the elapsed times from the commencement of hypoxia to asystole between WT and Nox1(-/Y) SAN cells. These findings suggest that Nox1 may have a protective effect against hypoxia-induced SAN dysfunction.


Assuntos
Bradicardia/etiologia , Bradicardia/prevenção & controle , Hipóxia/complicações , NADH NADPH Oxirredutases/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Bradicardia/fisiopatologia , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Modelos Animais de Doenças , Eletrocardiografia , Frequência Cardíaca , Hipóxia/fisiopatologia , Técnicas In Vitro , Moduladores de Transporte de Membrana/farmacologia , Moduladores de Transporte de Membrana/uso terapêutico , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NADPH Oxidase 1 , Nifedipino/farmacologia , Nifedipino/uso terapêutico , Pinacidil/farmacologia , Pinacidil/uso terapêutico , Bloqueio Sinoatrial/etiologia , Bloqueio Sinoatrial/fisiopatologia , Bloqueio Sinoatrial/prevenção & controle , Nó Sinoatrial/citologia , Nó Sinoatrial/fisiopatologia
9.
J Pharmacol Sci ; 124(4): 427-32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24646654

RESUMO

Clioquinol was used extensively in the mid-1900s as an amebicide to treat indigestion and diarrhea. It was eventually withdrawn from the market because it was linked to subacute myelo-optic neuropathy (SMON) in Japan. However, the pathogenesis of SMON has not yet been elucidated in detail. As reported previously, we performed a global analysis on human neuroblastoma cells using DNA chips. The global analysis and quantitative PCR demonstrated that the mRNA level of VGF (nonacronymic), the precursor of neuropeptides involved in pain reactions, was significantly increased when SH-SY5Y and IMR-32 neuroblastoma cells were treated with clioquinol. Promoter analyses in SH-SY5Y cells revealed that a region responsive to clioquinol exists between -1381 and -1349 of the human VGF gene, which contains an activator protein (AP)-1 site-like sequence. The introduction of mutations at this site significantly reduced clioquinol-induced transcriptional activation. Clioquinol induced the expression of the AP-1 family transcription factors, c-Jun and c-Fos. Electrophoresis mobility shift assays demonstrated that c-Jun and c-Fos could bind to the AP-1 site at -1374/-1368 in SH-SY5Y cells treated with clioquinol. RNA interference against c-Fos significantly suppressed clioquinol-induced VGF mRNA expression. These results suggest that the clioquinol-induced expression of c-Fos mediates the induction of VGF expression.


Assuntos
Amebicidas/farmacologia , Clioquinol/farmacologia , Expressão Gênica/efeitos dos fármacos , Fatores de Crescimento Neural/genética , Neuroblastoma/genética , Neuropeptídeos/genética , Proteínas Proto-Oncogênicas c-fos/genética , Amebicidas/efeitos adversos , Clioquinol/efeitos adversos , Humanos , Mielite/induzido quimicamente , Fatores de Crescimento Neural/metabolismo , Neuroblastoma/metabolismo , Neuropeptídeos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Neurite Óptica/induzido quimicamente , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Interferência de RNA/fisiologia , RNA Mensageiro/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Células Tumorais Cultivadas
10.
Biomolecules ; 13(2)2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36830722

RESUMO

The imbalance between reactive oxygen species (ROS) production and clearance causes oxidative stress and ROS, which play a central role in regulating cell and tissue physiology and pathology. Contingent upon concentration, ROS influence cancer development in contradictory ways, either stimulating cancer survival and growth or causing cell death. Cells developed evolutionarily conserved programs to sense and adapt redox the fluctuations to regulate ROS as either signaling molecules or toxic insults. The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2)-KEAP1 system is the master regulator of cellular redox and metabolic homeostasis. NRF2 has Janus-like roles in carcinogenesis and cancer development. Short-term NRF2 activation suppresses tissue injury, inflammation, and cancer initiation. However, cancer cells often exhibit constitutive NRF2 activation due to genetic mutations or oncogenic signaling, conferring advantages for cancer cells' survival and growth. Emerging evidence suggests that NRF2 hyperactivation, as an adaptive cancer phenotype under stressful tumor environments, regulates all hallmarks of cancer. In this review, we summarized the source of ROS, regulation of ROS signaling, and cellular sensors for ROS and oxygen (O2), we reviewed recent progress on the regulation of ROS generation and NRF2 signaling with a focus on the new functions of NRF2 in cancer development that reach beyond what we originally envisioned, including regulation of cancer metabolism, autophagy, macropinocytosis, unfolded protein response, proteostasis, and circadian rhythm, which, together with anti-oxidant and drug detoxification enzymes, contributes to cancer development, metastasis, and anticancer therapy resistance.


Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/metabolismo , Estresse Oxidativo
11.
J Neurosci ; 31(49): 18094-103, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22159121

RESUMO

The involvement of reactive oxygen species (ROS) in morphine-induced analgesia and tolerance has been suggested, yet how and where ROS take part in these processes remains largely unknown. Here, we report a novel role for the superoxide-generating enzyme NOX1/NADPH oxidase in the regulation of analgesia and acute analgesic tolerance. In mice lacking Nox1 (Nox1(-/Y)), the magnitude of the analgesia induced by morphine was significantly augmented. More importantly, analgesic tolerance induced by repeated administration of morphine was significantly suppressed compared with that in the littermates, wild-type Nox1(+/Y). In a membrane fraction obtained from the dorsal spinal cord, no difference was observed in morphine-induced [(35)S]GTPγS-binding between the genotypes, whereas morphine-stimulated GTPase activity was significantly attenuated in Nox1(-/Y). At 2 h after morphine administration, a significant decline in [(35)S]GTPγS-binding was observed in Nox1(+/Y) but not in Nox1(-/Y). No difference in the maximal binding and affinity of [(3)H]DAMGO was observed between the genotypes, but the translocation of protein kinase C isoforms to the membrane fraction following morphine administration was almost completely abolished in Nox1(-/Y). Finally, the phosphorylation of RGS9-2 and formation of a complex by Gαi2/RGS9-2 with 14-3-3 found in morphine-treated Nox1(+/Y) were significantly suppressed in Nox1(-/Y). Together, these results suggest that NOX1/NADPH oxidase attenuates the pharmacological effects of opioids by regulating GTPase activity and the phosphorylation of RGS9-2 by protein kinase C. NOX1/NADPH oxidase may thus be a novel target for the development of adjuvant therapy to retain the beneficial effects of morphine.


Assuntos
Tolerância a Medicamentos/genética , Hiperalgesia/tratamento farmacológico , Morfina/uso terapêutico , NADH NADPH Oxirredutases/metabolismo , Entorpecentes/uso terapêutico , Animais , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Gânglios Espinais/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina Trifosfato/farmacologia , Hiperalgesia/genética , Masculino , Camundongos , Camundongos Knockout , NADH NADPH Oxirredutases/deficiência , NADPH Oxidase 1 , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Proteína Quinase C/metabolismo , Proteínas RGS/metabolismo , RNA Mensageiro , Medula Espinal/citologia , Isótopos de Enxofre/metabolismo , Superóxidos/metabolismo , Trítio/metabolismo
12.
Am J Physiol Gastrointest Liver Physiol ; 302(10): G1133-42, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22403796

RESUMO

Although NADPH oxidase 1 (NOX1) has been shown to be highly expressed in the gastrointestinal tract, the physiological and pathophysiological roles of this enzyme are not yet fully understood. In the present study, we investigated the role of NOX1 in the pathogenesis of intestinal mucositis induced by the cancer chemotherapeutic agent 5-fluorouracil (5-FU) in mice. Intestinal mucositis was induced in Nox1 knockout (Nox1KO) and littermate wild-type (WT) mice via single, daily administration of 5-FU for 5 days. In WT mice, 5-FU caused severe intestinal mucositis characterized by a shortening of villus height, a disruption of crypts, a loss of body weight, and diarrhea. In Nox1KO mice, however, the severity of mucositis was significantly reduced, particularly with respect to crypt disruption. The numbers of apoptotic caspase-3- and caspase-8-activated cells in the intestinal crypt increased 24 h after the first 5-FU administration but were overall significantly lower in Nox1KO than in WT mice. Furthermore, the 5-FU-mediated upregulation of TNF-α, IL-1ß, and NOX1 and the production of reactive oxygen species were significantly attenuated in Nox1KO mice compared with that in WT mice. These findings suggest that NOX1 plays an important role in the pathogenesis of 5-FU-induced intestinal mucositis. NOX1-derived ROS production following administration of 5-FU may promote the apoptotic response through upregulation of inflammatory cytokines.


Assuntos
Antimetabólitos Antineoplásicos/efeitos adversos , Fluoruracila/efeitos adversos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/enzimologia , Mucosite/induzido quimicamente , Mucosite/enzimologia , NADH NADPH Oxirredutases/metabolismo , Animais , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/análise , Caspase 3/análise , Citocinas/biossíntese , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Mucosite/patologia , NADH NADPH Oxirredutases/genética , NADPH Oxidase 1 , Espécies Reativas de Oxigênio/metabolismo , Índice de Gravidade de Doença , Regulação para Cima/efeitos dos fármacos , Redução de Peso
13.
Hepatology ; 54(3): 949-58, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21618578

RESUMO

UNLABELLED: Among multiple isoforms of nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase expressed in the liver, the phagocytic NOX2 isoform in hepatic stellate cells (HSCs) has been demonstrated to play a key role in liver fibrogenesis. The aim of this study was to clarify the role of NOX1, a nonphagocytic form of NADPH oxidase, in the development of fibrosis using Nox1-deficient mice (Nox1KO). Liver injury and fibrosis were induced by bile duct ligation (BDL) and carbon tetrachloride in Nox1KO and wildtype littermate mice (WT). Primary HSCs were isolated to characterize the NOX1-induced signaling cascade involved in liver fibrogenesis. Following BDL, a time-dependent increase in NOX1 messenger RNA (mRNA) was demonstrated in WT liver. Compared with those in WT, levels of collagen-1α mRNA and hydroxyproline were significantly suppressed in Nox1KO with a reduced number of activated HSCs and less severe fibrotic lesions. The expression levels of α-smooth muscle actin, a marker of HSCs activation, were similar in cultured HSCs isolated from both genotypes. However, cell proliferation was significantly attenuated in HSCs isolated from Nox1KO. In these cells, the expression of p27(kip1) , a cell cycle suppressor, was significantly up-regulated. Concomitantly, a significant reduction in phosphorylated forms of Akt and forkhead box O (FOXO) 4, a downstream effector of Akt that regulates the transcription of p27(kip1) gene, was demonstrated in Nox1KO. Finally, the level of the oxidized inactivated form of phosphatase and tensin homolog (PTEN), a negative regulator of PI3K/Akt pathway, was significantly attenuated in HSCs of Nox1KO. CONCLUSION: These findings indicate that reactive oxygen species derived from NOX1/NADPH oxidase oxidize and inactivate PTEN to positively regulate the Akt/FOXO4/p27(kip1) signaling pathway. NOX1 may thus promote proliferation of HSCs and accelerate the development of fibrosis following BDL-induced liver injury.


Assuntos
Proliferação de Células , Células Estreladas do Fígado/patologia , Cirrose Hepática Experimental/etiologia , NADH NADPH Oxirredutases/fisiologia , NADP/fisiologia , Animais , Tetracloreto de Carbono/toxicidade , Proteínas de Ciclo Celular , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/fisiologia , Fatores de Transcrição Forkhead/fisiologia , Ligadura , Cirrose Hepática Experimental/patologia , Camundongos , NADPH Oxidase 1 , PTEN Fosfo-Hidrolase/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
14.
Front Med (Lausanne) ; 9: 941180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619644

RESUMO

Various chemical probes for the detection of reactive oxygen species have been developed to examine oxidative stress associated with different pathologies. L-012, a luminol-based chemiluminescent probe, is widely used to detect extracellular superoxide because of its high sensitivity. We herein demonstrated that the co-application of the peptide boronic acid proteasome inhibitor, bortezomib, with L-012 significantly increased its luminescence without affecting the background. More than a 5-fold increase was detected in the total luminescence of L-012 in both NADPH oxidase-expressing cells and the xanthine oxidase-dependent cell-free superoxide generation system, but not in their background. Therefore, bortezomib increased the signal-to-background ratio and improved the detection of low levels of superoxide. The application of MLN2238, another peptide boronic acid proteasome inhibitor, also enhanced the luminescence of L-012. In contrast, carfilzomib, an epoxyketone proteasome inhibitor, did not increase luminescence, suggesting that the effects of bortezomib depend on the chemical structure of the peptide boronic acid, but not on its pharmacological effects. Bortezomib-induced enhancements appeared to be specific to the detection of superoxide because the detection of H2O2 by Amplex Red/HRP was not affected by the application of bortezomib. In the quantitative detection of the superoxide-specific oxidative product 2-hydroxyethidium (2-OH-E+), the application of bortezomib resulted in a 2-fold increase in the level of 2-OH-E+. Therefore, bortezomib sensitizes the detection of superoxide in both cell-based and cell-free systems, highlighting a novel feature of compounds containing the peptide boronic acid as powerful enhancers for the detection of superoxide.

15.
Neuron ; 106(5): 816-829.e6, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32229307

RESUMO

Sodium taste regulates salt intake. The amiloride-sensitive epithelial sodium channel (ENaC) is the Na+ sensor in taste cells mediating attraction to sodium salts. However, cells and intracellular signaling underlying sodium taste in taste buds remain long-standing enigmas. Here, we show that a subset of taste cells with ENaC activity fire action potentials in response to ENaC-mediated Na+ influx without changing the intracellular Ca2+ concentration and form a channel synapse with afferent neurons involving the voltage-gated neurotransmitter-release channel composed of calcium homeostasis modulator 1 (CALHM1) and CALHM3 (CALHM1/3). Genetic elimination of ENaC in CALHM1-expressing cells as well as global CALHM3 deletion abolished amiloride-sensitive neural responses and attenuated behavioral attraction to NaCl. Together, sodium taste is mediated by cells expressing ENaC and CALHM1/3, where oral Na+ entry elicits suprathreshold depolarization for action potentials driving voltage-dependent neurotransmission via the channel synapse. Thus, all steps in sodium taste signaling are voltage driven and independent of Ca2+ signals. This work also reveals ENaC-independent salt attraction.


Assuntos
Potenciais de Ação/fisiologia , Cálcio/metabolismo , Canais Epiteliais de Sódio/metabolismo , Sódio/metabolismo , Papilas Gustativas/citologia , Paladar/fisiologia , Potenciais de Ação/efeitos dos fármacos , Amilorida/farmacologia , Animais , Canais de Cálcio/metabolismo , Células Quimiorreceptoras/metabolismo , Células Quimiorreceptoras/fisiologia , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Camundongos , Neurônios Aferentes/metabolismo , Técnicas de Patch-Clamp , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica , Papilas Gustativas/metabolismo , Papilas Gustativas/fisiologia
16.
Free Radic Biol Med ; 147: 90-101, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31838229

RESUMO

The involvement of reactive oxygen species (ROS) has been suggested in the development of inflammatory bowel disease (IBD). An impaired intestinal barrier function is common in IBD patients. Here, we report the central role of NOX1/NADPH oxidase, a major source of ROS in nonphagocytic cells, in intestinal barrier dysfunction. By in vivo imaging using L-012 as a probe, a time-dependent increase in ROS was demonstrated in the abdomen of wild-type mice (WT) administered lipopolysaccharide (LPS: 6 mg/kg i.p.), but it was almost completely abolished in mice deficient in Nox1 (Nox1-KO) or the inducible nitric oxide synthase gene (iNOS-KO). By ex vivo imaging, increased ROS production was mainly shown in the ileum, where enhanced immunostaining of NOX1 was observed on the apical side of the epithelium. On the other hand, a punctate staining pattern of 3-nitrotyrosine, a marker of peroxynitrite production, was demonstrated in the lamina propria. When LPS-induced intestinal hyperpermeability was assessed by the oral administration of fluorescein isothiocyanate-conjugated dextran (FD-4), it was significantly suppressed in Nox1-KO as well as iNOS-KO. When Nox1-KO adoptively transferred with WT bone marrow were treated with LPS, the serum level of FD-4 was significantly elevated, whereas it remained unchanged in WT receiving bone marrow derived from Nox1-KO. Concomitantly, the activation of matrix metalloproteinase-9 induced by LPS was alleviated not only in intestinal tissue but also in peritoneal macrophages of Nox1-KO. Up-regulation of iNOS by LPS was significantly inhibited in macrophages deficient in Nox1, illustrating a functional hierarchy in NOX1/iNOS signaling. Together, these findings suggest that NOX1 in bone marrow-derived cells, but not epithelial cells, perturbs intestinal barrier integrity during endotoxemia.


Assuntos
Medula Óssea , NADPH Oxidases , Animais , Humanos , Camundongos , Camundongos Knockout , NADH NADPH Oxirredutases , NADPH Oxidase 1/genética , Espécies Reativas de Oxigênio
17.
J Neurosci ; 28(38): 9486-94, 2008 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-18799680

RESUMO

The involvement of reactive oxygen species (ROS) in an augmented sensitivity to painful stimuli (hyperalgesia) during inflammation has been suggested, yet how and where ROS affect the pain signaling remain unknown. Here we report a novel role for the superoxide-generating NADPH oxidase in the development of hyperalgesia. In mice lacking Nox1 (Nox1(-/Y)), a catalytic subunit of NADPH oxidase, thermal and mechanical hyperalgesia was significantly attenuated, whereas no change in nociceptive responses to heat or mechanical stimuli was observed. In dorsal root ganglia (DRG) neurons of Nox1(+/Y), pretreatment with chemical mediators bradykinin, serotonin, or phorbol 12-myristate 13-acetate (PMA) augmented the capsaicin-induced calcium increase, whereas this increase was significantly attenuated in DRG neurons of Nox1(-/Y). Concomitantly, PMA-induced translocation of PKCepsilon was markedly perturbed in Nox1(-/Y) or Nox1(+/Y) DRG neurons treated with ROS-scavenging agents. In cells transfected with tagged PKCepsilon, hydrogen peroxide induced translocation and a reduction in free sulfhydryls of full-length PKCepsilon but not of the deletion mutant lacking the C1A domain. These findings indicate that NOX1/NADPH oxidase accelerates the translocation of PKCepsilon in DRG neurons, thereby enhancing the TRPV1 activity and the sensitivity to painful stimuli.


Assuntos
Inflamação/metabolismo , NADH NADPH Oxirredutases/metabolismo , Nociceptores/metabolismo , Estresse Oxidativo/fisiologia , Dor/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Sequestradores de Radicais Livres/farmacologia , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiopatologia , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Inflamação/fisiopatologia , Mediadores da Inflamação/farmacologia , Camundongos , Camundongos Knockout , NADH NADPH Oxirredutases/genética , NADPH Oxidase 1 , Neurônios Aferentes/metabolismo , Nociceptores/fisiopatologia , Dor/fisiopatologia , Proteína Quinase C-épsilon/efeitos dos fármacos , Proteína Quinase C-épsilon/genética , Proteína Quinase C-épsilon/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo
18.
J Pharmacol Sci ; 111(3): 260-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19881226

RESUMO

Beneficial effects of statins on cardiovascular diseases have been attributed to decreased generation of reactive oxygen species (ROS). We tested the hypothesis that atorvastatin protects against the development of hypertension by reducing levels of NADPH oxidase-derived ROS in two hypertensive animal models. Atorvastatin was given to mice chronically infused with angiotensin (Ang) II or to apolipoprotein E (ApoE)-deficient mice fed a high-fat diet. Increased mean blood pressure (MBP) demonstrated in both animal models was significantly suppressed by atorvastatin with reduced ROS production in the aorta. Treatment with atorvastatin did not alter the mRNA level of NOX1, a catalytic subunit of NADPH oxidase, but decreased the levels of other NOX isoforms, NOX2 and NOX4, in the ApoE-deficient mice fed a high-fat diet. In the Ang II-infused model treated with statin, only the NOX4 mRNA level was reduced. Membrane translocation of Rac1 was significantly reduced in the Ang II-infused mice treated with atorvastatin. Finally, atorvastatin administered to Ang II-infused mice lacking the Nox1 gene elicited an additional decline in MBP compared to Nox1-deficient mice treated with vehicle. Together, these findings suggest that reduced expression and activity of the isoforms of NADPH oxidase, involving NOX1, NOX2, and possibly NOX4, mediate the anti-hypertensive effect of atorvastatin.


Assuntos
Anti-Hipertensivos , Ácidos Heptanoicos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , NADPH Oxidases/metabolismo , Pirróis/farmacologia , Angiotensina II/farmacologia , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/patologia , Apolipoproteínas E/genética , Atorvastatina , Pressão Sanguínea/efeitos dos fármacos , Western Blotting , Gorduras na Dieta/efeitos adversos , Etídio , Hipertensão/induzido quimicamente , Hipertensão/prevenção & controle , Isoenzimas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas rac1 de Ligação ao GTP/biossíntese , Proteínas rac1 de Ligação ao GTP/genética
19.
FEBS J ; 286(4): 678-687, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30653821

RESUMO

The involvement of superoxide-generating NADPH oxidase (NOX) in the cytotoxic effects of cigarette smoke extracts has been documented. However, the underlying molecular mechanisms and NOX isoform involved have not been fully clarified. Among the different NADPH oxidase isoforms identified so far, NOX1 and NOX4 were found to be expressed in rat H9c2 cardiomyocytes. When H9c2 cells were exposed to acrolein or methyl vinyl ketone (MVK), major toxic components of cigarette smoke extracts, a dose-dependent decline in cell viability was observed. Unexpectedly, disruption of Nox1 as well as Nox4 significantly exacerbated cytotoxicity induced by acrolein or MVK. Compared with Nox4-disrupted cells, Nox1-disrupted cells were more vulnerable to acrolein and MVK at lower concentrations. Disruption of Nox1 markedly attenuated the levels of total and reduced glutathione (GSH) in H9c2 clones. Reduction in the cystine level in the culture medium to deplete intracellular GSH significantly exacerbated acrolein or MVK-induced cytotoxicity. Nox1 disruption neither attenuated the level of glutamate-cystine antiporter protein nor the activity of glutamate-cysteine ligase, both rate-limiting factors for GSH synthesis. On the other hand, increased expression of multidrug resistance-associated protein 1 (MRP1), which mediates glutathione efflux, was demonstrated in Nox1-disrupted cells. The augmented toxicity of acrolein and MVK in these cells was partially but significantly blunted in the presence of an MRP1 inhibitor, reversan. Taken together, these results show that NOX1/NADPH oxidase regulates the expression of MRP1 to maintain intracellular GSH levels in cardiomyocytes and protect against cytotoxic components of cigarette smoke extracts. A novel crosstalk between NOX1 and MRP1 was demonstrated in this study.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Miócitos Cardíacos/metabolismo , NADPH Oxidase 1/metabolismo , Acroleína/farmacologia , Animais , Butanonas/farmacologia , Sistemas CRISPR-Cas , Sobrevivência Celular , Células Cultivadas , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , NADPH Oxidase 1/antagonistas & inibidores , NADPH Oxidase 1/genética , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
20.
Biochem Biophys Res Commun ; 374(2): 351-5, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18638447

RESUMO

NADPH oxidase is a major source of the superoxide produced in cardiovascular tissues. The expression of NOX1, a catalytic subunit of NADPH oxidase, is induced by various vasoactive factors, including angiotensin II, prostaglandin (PG) F(2alpha), and platelet-derived growth factor (PDGF). It was reported previously that the inducible expression of NOX1 is governed by the activating transcription factor-1 (ATF-1)-myocyte enhancer factor 2B (MEF2B) cascade downstream of phosphoinositide 3 (PI3) kinase. It was also reported that extracellular signal-regulated kinase (ERK) 1/2 is involved in the expression of NOX1. To further clarify the factors involved in NOX1 induction downstream of ERK1/2, the promoter region of the NOX1 gene was analyzed. A consensus activator protein-1 (AP-1) site was found at -98/-92 in the 5'-flanking region of the rat NOX1 gene. The introduction of mutations at this site abolished PGF(2alpha)-induced transcriptional activation in a luciferase assay. Electrophoresis mobility shift assays demonstrated that PGF(2alpha) and PDGF augmented the binding of JunB to this sequence. PD98059, an inhibitor of MAPK/ERK kinase, suppressed the expression of JunB induced by PGF(2alpha) or PDGF. These results suggest that the ERK1/2-JunB pathway is a key regulator of the inducible expression of the NOX1 gene in vascular smooth muscle cells.


Assuntos
Regulação Enzimológica da Expressão Gênica , Músculo Liso Vascular/enzimologia , NADH NADPH Oxirredutases/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/metabolismo , Ativação Transcricional , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Sequência Consenso , Dinoprosta/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Mutação , NADPH Oxidase 1 , Regiões Promotoras Genéticas , Inibidores de Proteínas Quinases/farmacologia , Ratos , Superóxidos/metabolismo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA