Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Plant J ; 119(2): 1158-1172, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38713824

RESUMO

CRISPR/Cas9 is currently the most powerful tool to generate mutations in plant genomes and more efficient tools are needed as the scale of experiments increases. In the model plant Arabidopsis, the choice of the promoter driving Cas9 expression is critical to generate germline mutations. Several optimal promoters have been reported. However, it is unclear which promoter is ideal as they have not been thoroughly tested side by side. Furthermore, most plant vectors still use one of the two Cas9 nuclear localization sequence (NLS) configurations initially reported. We genotyped more than 6000 Arabidopsis T2 plants to test seven promoters and six types of NLSs across 14 targets to systematically improve the generation of single and multiplex inheritable mutations. We found that the RPS5A promoter and bipartite NLS were individually the most efficient components. When combined, 99% of T2 plants contained at least one knockout (KO) mutation and 84% contained 4- to 7-plex KOs, the highest multiplexing KO rate in Arabidopsis to date. These optimizations will be useful to generate higher-order KOs in the germline of Arabidopsis and will likely be applicable to other CRISPR systems as well.


Assuntos
Arabidopsis , Sistemas CRISPR-Cas , Edição de Genes , Mutagênese , Arabidopsis/genética , Edição de Genes/métodos , Regiões Promotoras Genéticas/genética , Genoma de Planta/genética , Plantas Geneticamente Modificadas/genética , Mutação , Técnicas de Inativação de Genes/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
2.
Biomimetics (Basel) ; 9(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38667238

RESUMO

The osteoblastic differentiation of bone marrow stromal cells (bMSCs), critical to the osseointegration of titanium implants, is enhanced on titanium surfaces with biomimetic topography, and this is further enhanced when the surfaces are hydrophilic. This is a result of changing the surface free energy to change protein adsorption, improving cell attachment and differentiation, and improving bone-to-implant contact in patients. In this study, we examined different methods of plasma treatment, a well-accepted method of increasing hydrophilicity, and evaluated changes in surface properties as well as the response of bMSCs in vitro. Commercially pure Ti and titanium-aluminum-vanadium (Ti6Al4V) disks were sand-blasted and acid-etched to impart microscale and nanoscale roughness, followed by treatment with various post-processing surface modification methods, including ultraviolet light (UV), dielectric barrier discharge (DBD)-generated plasma, and plasma treatment under an argon or oxygen atmosphere. Surface wettability was based on a sessile water drop measurement of contact angle; the elemental composition was analyzed using XPS, and changes in topography were characterized using scanning electron microscopy (SEM) and confocal imaging. The cell response was evaluated using bMSCs; outcome measures included the production of osteogenic markers, paracrine signaling factors, and immunomodulatory cytokines. All plasma treatments were effective in inducing superhydrophilic surfaces. Small but significant increases in surface roughness were observed following UV, DBD and argon plasma treatment. No other modifications to surface topography were noted. However, the relative composition of Ti, O, and C varied with the treatment method. The cell response to these hydrophilic surfaces depended on the plasma treatment method used. DBD plasma treatment significantly enhanced the osteogenic response of the bMSCs. In contrast, the bMSC response to argon plasma-treated surfaces was varied, with an increase in OPG production but a decrease in OCN production. These results indicate that post-packaging methods that increased hydrophilicity as measured by contact angle did not change the surface free energy in the same way, and accordingly, cells responded differently. Wettability and surface chemistry alone are not enough to declare whether an implant has an improved osteogenic effect and do not fully explain how surface free energy affects cell response.

3.
Ann Biomed Eng ; 52(6): 1744-1762, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38517621

RESUMO

Osseointegration is a complex biological cascade that regulates bone regeneration after implant placement. Implants possessing complex multiscale surface topographies augment this regenerative process through the regulation of bone marrow stromal cells (MSCs) that are in contact with the implant surface. One pathway regulating osteoblastic differentiation is Wnt signaling, and upregulation of non-canonical Wnts increases differentiation of MSCs on these titanium substrates. Wnt16 is a non-canonical Wnt shown to regulate bone morphology in mouse models. This study evaluated the role of Wnt16 during surface-mediated osteoblastic differentiation of MSCs in vitro and osseointegration in vivo. MSCs were cultured on Ti substrates with different surface properties and non-canonical Wnt expression was determined. Subsequently, MSCs were cultured on Ti substrates +/-Wnt16 (100 ng/mL) and anti-Wnt16 antibodies (2 µg/mL). Wnt16 expression was increased in cells grown on microrough surfaces that were processed to be hydrophilic and have nanoscale roughness. However, treatment MSCs on these surfaces with exogenous rhWnt16b increased total DNA content and osteoprotegerin production, but reduced osteoblastic differentiation and production of local factors necessary for osteogenesis. Addition of anti-Wnt16 antibodies blocked the inhibitor effects of Wnt16. The response to Wnt16 was likely independent of other osteogenic pathways like Wnt11-Wnt5a signaling and semaphorin 3a signaling. We used an established rat model of cortical and trabecular femoral bone impairment following botox injections (2 injections of 8 units/leg each, starting and maintenance doses) to assess Wnt16 effects on whole bone morphology and implant osseointegration. Wnt16 injections did not alter whole bone morphology significantly (BV/TV, cortical thickness, restoration of trabecular bone) but were effective at increasing cortical bone-to-implant contact during impaired osseointegration in the botox model. The mechanical quality of the increased bone was not sufficient to rescue the deleterious effects of botox. Clinically, these results are important to understand the interaction of cortical and trabecular bone during implant integration. They suggest a role for Wnt16 in modulating bone remodeling by reducing osteoclastic activity. Targeted strategies to temporally regulate Wnt16 after implant placement could be used to improve osseointegration by increasing the net pool of osteoprogenitor cells.


Assuntos
Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais , Osseointegração , Ratos Sprague-Dawley , Proteínas Wnt , Animais , Proteínas Wnt/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Ratos , Proliferação de Células/efeitos dos fármacos , Osseointegração/efeitos dos fármacos , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/patologia , Masculino , Titânio , Modelos Animais de Doenças , Células Cultivadas
4.
Nat Commun ; 15(1): 1113, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326330

RESUMO

Site-specific recombinases such as the Cre-LoxP system are routinely used for genome engineering in both prokaryotes and eukaryotes. Importantly, recombinases complement the CRISPR-Cas toolbox and provide the additional benefit of high-efficiency DNA editing without generating toxic DNA double-strand breaks, allowing multiple recombination events at the same time. However, only a handful of independent, orthogonal recombination systems are available, limiting their use in more complex applications that require multiple specific recombination events, such as metabolic engineering and genetic circuits. To address this shortcoming, we develop 63 symmetrical LoxP variants and test 1192 pairwise combinations to determine their cross-reactivity and specificity upon Cre activation. Ultimately, we establish a set of 16 orthogonal LoxPsym variants and demonstrate their use for multiplexed genome engineering in both prokaryotes (E. coli) and eukaryotes (S. cerevisiae and Z. mays). Together, this work yields a significant expansion of the Cre-LoxP toolbox for genome editing, metabolic engineering and other controlled recombination events, and provides insights into the Cre-LoxP recombination process.


Assuntos
Integrases , Recombinação Genética , Integrases/genética , Integrases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Recombinases/metabolismo , DNA/metabolismo
5.
PLoS Negl Trop Dis ; 18(7): e0012255, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39038032

RESUMO

Infection with the protozoan parasite Trypanosoma cruzi is causative for Chagas disease, which is a highly neglected tropical disease prevalent in Latin America. Humans are primary infected through vectorial transmission by blood-sucking triatomine bugs. The parasite enters the human host through mucous membranes or small skin lesions. Since keratinocytes are the predominant cell type in the epidermis, they play a critical role in detecting disruptions in homeostasis and aiding in pathogen elimination by the immune system in the human skin as alternative antigen-presenting cells. Interestingly, keratinocytes also act as a reservoir for T. cruzi, as the skin has been identified as a major site of persistent infection in mice with chronic Chagas disease. Moreover, there are reports of the emergence of T. cruzi amastigote nests in the skin of immunocompromised individuals who are experiencing reactivation of Chagas disease. This observation implies that the skin may serve as a site for persistent parasite presence during chronic human infection too and underscores the significance of investigating the interactions between T. cruzi and skin cells. Consequently, the primary objective of this study was to establish and characterize the infection kinetics in human primary epidermal keratinocytes (hPEK). Our investigation focused on surface molecules that either facilitated or hindered the activation of natural killer (NK) cells, which play a crucial role in controlling the infection. To simulate the in vivo situation in humans, an autologous co-culture model was developed to examine the interactions between T. cruzi infected keratinocytes and NK cells. We evaluated the degranulation, cytokine production, and cytotoxicity of NK cells in response to the infected keratinocytes. We observed a strong activation of NK cells by infected keratinocytes, despite minimal alterations in the expression of activating or inhibitory ligands on NK cell receptors. However, stimulation with recombinant interferon-gamma (IFN-γ), a cytokine known to be present in significant quantities during chronic T. cruzi infections in the host, resulted in a substantial upregulation of these ligands on primary keratinocytes. Overall, our findings suggest the crucial role of NK cells in controlling acute T. cruzi infection in the upper layer of the skin and shed light on keratinocytes as potential initial targets of infection.


Assuntos
Doença de Chagas , Queratinócitos , Células Matadoras Naturais , Trypanosoma cruzi , Trypanosoma cruzi/fisiologia , Trypanosoma cruzi/imunologia , Queratinócitos/imunologia , Queratinócitos/parasitologia , Humanos , Células Matadoras Naturais/imunologia , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Células Cultivadas , Citocinas/metabolismo , Animais
6.
Cell Rep Methods ; 4(7): 100818, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38986614

RESUMO

Protein-protein interactions play an important biological role in every aspect of cellular homeostasis and functioning. Proximity labeling mass spectrometry-based proteomics overcomes challenges typically associated with other methods and has quickly become the current state of the art in the field. Nevertheless, tight control of proximity-labeling enzymatic activity and expression levels is crucial to accurately identify protein interactors. Here, we leverage a T2A self-cleaving peptide and a non-cleaving mutant to accommodate the protein of interest in the experimental and control TurboID setup. To allow easy and streamlined plasmid assembly, we built a Golden Gate modular cloning system to generate plasmids for transient expression and stable integration. To highlight our T2A Split/link design, we applied it to identify protein interactions of the glucocorticoid receptor and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid and non-structural protein 7 (NSP7) proteins by TurboID proximity labeling. Our results demonstrate that our T2A split/link provides an opportune control that builds upon previously established control requirements in the field.


Assuntos
Peptídeos , Proteômica , SARS-CoV-2 , Proteômica/métodos , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Peptídeos/metabolismo , Peptídeos/química , COVID-19/metabolismo , COVID-19/virologia , Células HEK293 , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/química , Plasmídeos/genética , Plasmídeos/metabolismo , Espectrometria de Massas/métodos , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Mapeamento de Interação de Proteínas/métodos
7.
Science ; 384(6691): eabo7027, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574142

RESUMO

Macrophages are functionally heterogeneous cells essential for apoptotic cell clearance. Apoptotic cells are defined by homogeneous characteristics, ignoring their original cell lineage identity. We found that in an interleukin-4 (IL-4)-enriched environment, the sensing of apoptotic neutrophils by macrophages triggered their tissue remodeling signature. Engulfment of apoptotic hepatocytes promoted a tolerogenic phenotype, whereas phagocytosis of T cells had little effect on IL-4-induced gene expression. In a mouse model of parasite-induced pathology, the transfer of macrophages conditioned with IL-4 and apoptotic neutrophils promoted parasitic egg clearance. Knockout of phagocytic receptors required for the uptake of apoptotic neutrophils and partially T cells, but not hepatocytes, exacerbated helminth infection. These findings suggest that the identity of apoptotic cells may contribute to the development of distinct IL-4-driven immune programs in macrophages.


Assuntos
Apoptose , Interleucina-4 , Macrófagos , Fagocitose , Esquistossomose mansoni , Animais , Camundongos , Apoptose/imunologia , Hepatócitos/imunologia , Interleucina-4/genética , Interleucina-4/metabolismo , Macrófagos/imunologia , Camundongos Knockout , Neutrófilos/imunologia , Fagocitose/imunologia , Esquistossomose mansoni/genética , Esquistossomose mansoni/imunologia , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA