Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
FASEB J ; 35(3): e21307, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33638910

RESUMO

Airway exposure to eg particulate matter is associated with cardiovascular disease including atherosclerosis. Acute phase genes, especially Serum Amyloid A3 (Saa3), are highly expressed in the lung following pulmonary exposure to particles. We aimed to investigate whether the human acute phase protein SAA (a homolog to mouse SAA3) accelerated atherosclerotic plaque progression in Apolipoprotein E knockout (ApoE-/- ) mice. Mice were intratracheally (i.t.) instilled with vehicle (phosphate buffered saline) or 2 µg human SAA once a week for 10 weeks. Plaque progression was assessed in the aorta using noninvasive ultrasound imaging of the aorta arch as well as by en face analysis. Additionally, lipid peroxidation, SAA3, and cholesterol were measured in plasma, inflammation was determined in lung, and mRNA levels of the acute phase genes Saa1 and Saa3 were measured in the liver and lung, respectively. Repeated i.t. instillation with SAA caused a significant progression in the atherosclerotic plaques in the aorta (1.5-fold). Concomitantly, SAA caused a statistically significant increase in neutrophils in bronchoalveolar lavage fluid (625-fold), in pulmonary Saa3 (196-fold), in systemic SAA3 (1.8-fold) and malondialdehyde levels (1.14-fold), indicating acute phase response (APR), inflammation and oxidative stress. Finally, pulmonary exposure to SAA significantly decreased the plasma levels of very low-density lipoproteins - low-density lipoproteins and total cholesterol, possibly due to lipids being sequestered in macrophages or foam cells in the arterial wall. Combined these results indicate the importance of the pulmonary APR and SAA3 for plaque progression.


Assuntos
Apolipoproteínas E/fisiologia , Aterosclerose/etiologia , Pulmão/metabolismo , Proteína Amiloide A Sérica/toxicidade , Animais , Aorta Torácica/diagnóstico por imagem , Feminino , Lipídeos/sangue , Malondialdeído/sangue , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Proteína Amiloide A Sérica/genética
2.
Part Fibre Toxicol ; 19(1): 50, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35854357

RESUMO

BACKGROUND: The EU-project GRACIOUS developed an Integrated Approach to Testing and Assessment (IATA) to support grouping high aspect ratio nanomaterials (HARNs) presenting a similar inhalation hazard. Application of grouping reduces the need to assess toxicity on a case-by-case basis and supports read-across of hazard data from substances that have the data required for risk assessment (source) to those that lack such data (target). The HARN IATA, based on the fibre paradigm for pathogenic fibres, facilitates structured data gathering to propose groups of similar HARN and to support read-across by prompting users to address relevant questions regarding HARN morphology, biopersistence and inflammatory potential. The IATA is structured in tiers, allowing grouping decisions to be made using simple in vitro or in silico methods in Tier1 progressing to in vivo approaches at the highest Tier3. Here we present a case-study testing the applicability of GRACIOUS IATA to form an evidence-based group of multiwalled carbon nanotubes (MWCNT) posing a similar predicted fibre-hazard, to support read-across and reduce the burden of toxicity testing. RESULTS: The case-study uses data on 15 different MWCNT, obtained from the published literature. By following the IATA, a group of 2 MWCNT was identified (NRCWE006 and NM-401) based on a high degree of similarity. A pairwise similarity assessment was subsequently conducted between the grouped MWCNT to evaluate the potential to conduct read-across and fill data gaps required for regulatory hazard assessment. The similarity assessment, based on expert judgement of Tier 1 assay results, predicts both MWCNT are likely to cause a similar acute in vivo hazard. This result supports the possibility for read-across of sub-chronic and chronic hazard endpoint data for lung fibrosis and carcinogenicity between the 2 grouped MWCNT. The implications of accepting the similarity assessment based on expert judgement of the MWCNT group are considered to stimulate future discussion on the level of similarity between group members considered sufficient to allow regulatory acceptance of a read-across argument. CONCLUSION: This proof-of-concept case-study demonstrates how a grouping hypothesis and IATA may be used to support a nuanced and evidence-based grouping of 'similar' MWCNT and the subsequent interpolation of data between group members to streamline the hazard assessment process.


Assuntos
Nanotubos de Carbono , Fibrose Pulmonar , Administração por Inalação , Humanos , Pulmão , Nanotubos de Carbono/toxicidade , Testes de Toxicidade/métodos
3.
Indoor Air ; 32(12): e13177, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36567521

RESUMO

We spend most of our time indoors; however, little is known about the effects of exposure to aerosol particles indoors. We aimed to determine differences in relative toxicity and physicochemical properties of PM2.5 collected simultaneously indoors (PM2.5 INDOOR ) and outdoors (PM2.5 OUTDOOR ) in 15 occupied homes in southern Sweden. Collected particles were extracted from filters, pooled (indoor and outdoor separately), and characterized for chemical composition and endotoxins before being tested for toxicity in mice via intratracheal instillation. Various endpoints including lung inflammation, genotoxicity, and acute-phase response in lung and liver were assessed 1, 3, and 28 days post-exposure. Chemical composition of particles used in toxicological assessment was compared to particles analyzed without extraction. Time-resolved particle mass and number concentrations were monitored. PM2.5 INDOOR showed higher relative concentrations (µg mg-1 ) of metals, PAHs, and endotoxins compared to PM2.5 OUTDOOR . These differences may be linked to PM2.5 INDOOR causing significantly higher lung inflammation and lung acute-phase response 1 day post-exposure compared to PM2.5 OUTDOOR and vehicle controls, respectively. None of the tested materials caused genotoxicity. PM2.5 INDOOR displayed higher relative toxicity than PM2.5 OUTDOOR under the studied conditions, that is, wintertime with reduced air exchange rates, high influence of indoor sources, and relatively low outdoor concentrations of PM. Reducing PM2.5 INDOOR exposure requires reduction of both infiltration from outdoors and indoor-generated particles.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Pneumonia , Animais , Camundongos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Tamanho da Partícula , Reação de Fase Aguda , Suécia , Material Particulado/análise , Pneumonia/etiologia
4.
Toxicol Mech Methods ; 32(6): 439-452, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35086424

RESUMO

Improved strategies are required for testing nanomaterials (NMs) to make hazard and risk assessment more efficient and sustainable. Including reduced reliance on animal models, without decreasing the level of human health protection. Acellular detection of reactive oxygen species (ROS) may be useful as a screening assay to prioritize NMs of high concern. To improve reliability and reproducibility, and minimize uncertainty, a standard operating procedure (SOP) has been developed for the detection of ROS using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH2-DA) assay. The SOP has undergone an inter- and intra-laboratory comparison, to evaluate robustness, reliability, and reproducibility, using representative materials (ZnO, CuO, Mn2O3, and BaSO4 NMs), and a number of calibration tools to normalize data. The SOP includes an NM positive control (nanoparticle carbon black (NPCB)), a chemical positive control (SIN-1), and a standard curve of fluorescein fluorescence. The interlaboratory comparison demonstrated that arbitrary fluorescence units show high levels of partner variability; however, data normalization improved variability. With statistical analysis, it was shown that the SIN-1 positive control provided an extremely high level of reliability and reproducibility as a positive control and as a normalization tool. The NPCB positive control can be used with a relatively high level of reproducibility, and in terms of the representative materials, the reproducibility CuO induced-effects was better than for Mn2O3. Using this DCFH2-DA acellular assay SOP resulted in a robust intra-laboratory reproduction of ROS measurements from all NMs tested, while effective reproduction across different laboratories was also demonstrated; the effectiveness of attaining reproducibility within the interlaboratory assessment was particle-type-specific.


Assuntos
Nanopartículas , Nanoestruturas , Animais , Bioensaio , Nanoestruturas/toxicidade , Espécies Reativas de Oxigênio , Reprodutibilidade dos Testes
5.
Part Fibre Toxicol ; 18(1): 25, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301283

RESUMO

BACKGROUND: Multi-walled carbon nanotubes (MWCNT) have received attention due to extraordinary properties, resulting in concerns for occupational health and safety. Costs and ethical concerns of animal testing drive a need for in vitro models with predictive power in respiratory toxicity. The aim of this study was to assess pro-inflammatory response (Interleukin-8 expression, IL-8) and genotoxicity (DNA strand breaks) caused by MWCNT with different physicochemical properties in different pulmonary cell models and correlate these to previously published in vivo data. Seven MWCNT were selected; two long/thick (NRCWE-006/Mitsui-7 and NM-401), two short/thin (NM-400 and NM-403), a pristine (NRCWE-040) and two surface modified; hydroxylated (NRCWE-041) and carboxylated (NRCWE-042). Carbon black Printex90 (CB) was included as benchmark material. Human alveolar epithelial cells (A549) and monocyte-derived macrophages (THP-1a) were exposed to nanomaterials (NM) in submerged conditions, and two materials (NM-400 and NM-401) in co-cultures of A549/THP-1a and lung fibroblasts (WI-38) in an air-liquid interface (ALI) system. Effective doses were quantified by thermo-gravimetric-mass spectrometry analysis (TGA-MS). To compare genotoxicity in vitro and in vivo, we developed a scoring system based on a categorization of effects into standard deviation (SD) units (< 1, 1, 2, 3 or 4 standard deviation increases) for the increasing genotoxicity. RESULTS: Effective doses were shown to be 25 to 53%, and 21 to 57% of the doses administered to A549 and THP-1a, respectively. In submerged conditions (A549 and THP-1a cells), all NM induced dose-dependent IL-8 expression. NM-401 and NRCWE-006 caused the strongest pro-inflammatory response. In the ALI-exposed co-culture, only NM-401 caused increased IL-8 expression, and no DNA strand breaks were observed. Strong correlations were found between in vitro and in vivo inflammation when doses were normalized by surface area (also proxy for diameter and length). Significantly increased DNA damage was found for all MWCNT in THP-1a cells, and for short MWCNT in A549 cells. A concordance in genotoxicity of 83% was obtained between THP-1a cells and broncho-alveolar lavaged (BAL) cells. CONCLUSION: This study shows correlations of pro-inflammatory potential in A549 and THP-1a cells with neutrophil influx in mice, and concordance in genotoxic response between THP-1a cells and BAL cells, for seven MWCNT.


Assuntos
Nanotubos de Carbono , Células A549 , Células Epiteliais Alveolares , Animais , Dano ao DNA , Humanos , Pulmão , Camundongos , Nanotubos de Carbono/toxicidade
6.
Small ; 16(21): e1907476, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32227434

RESUMO

Inhaled nanoparticles constitute a potential health hazard due to their size-dependent lung deposition and large surface to mass ratio. Exposure to high levels contributes to the risk of developing respiratory and cardiovascular diseases, as well as of lung cancer. Particle-induced acute phase response may be an important mechanism of action of particle-induced cardiovascular disease. Here, the authors review new important scientific evidence showing causal relationships between inhalation of particle and nanomaterials, induction of acute phase response, and risk of cardiovascular disease. Particle-induced acute phase response provides a means for risk assessment of particle-induced cardiovascular disease and underscores cardiovascular disease as an occupational disease.


Assuntos
Reação de Fase Aguda , Doenças Cardiovasculares , Exposição por Inalação , Nanopartículas , Reação de Fase Aguda/induzido quimicamente , Doenças Cardiovasculares/induzido quimicamente , Humanos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Nanopartículas/toxicidade , Doenças Profissionais/induzido quimicamente , Tamanho da Partícula , Material Particulado/toxicidade
7.
Toxicol Appl Pharmacol ; 386: 114830, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31734322

RESUMO

Nanomaterial (NM) characteristics may affect the pulmonary toxicity and inflammatory response, including specific surface area, size, shape, crystal phase or other surface characteristics. Grouping of TiO2 in hazard assessment might be challenging because of variation in physicochemical properties. We exposed C57BL/6 J mice to a single dose of four anatase TiO2 NMs with various sizes and shapes by intratracheal instillation and assessed the pulmonary toxicity 1, 3, 28, 90 or 180 days post-exposure. The quartz DQ12 was included as benchmark particle. Pulmonary responses were evaluated by histopathology, electron microscopy, bronchoalveolar lavage (BAL) fluid cell composition and acute phase response. Genotoxicity was evaluated by DNA strand break levels in BAL cells, lung and liver in the comet assay. Multiple regression analyses were applied to identify specific TiO2 NMs properties important for the pulmonary inflammation and acute phase response. The TiO2 NMs induced similar inflammatory responses when surface area was used as dose metrics, although inflammatory and acute phase response was greatest and more persistent for the TiO2 tube. Similar histopathological changes were observed for the TiO2 tube and DQ12 including pulmonary alveolar proteinosis indicating profound effects related to the tube shape. Comparison with previously published data on rutile TiO2 NMs indicated that rutile TiO2 NMs were more inflammogenic in terms of neutrophil influx than anatase TiO2 NMs when normalized to total deposited surface area. Overall, the results suggest that specific surface area, crystal phase and shape of TiO2 NMs are important predictors for the observed pulmonary effects of TiO2 NMs.


Assuntos
Reação de Fase Aguda/induzido quimicamente , Nanoestruturas/toxicidade , Pneumonia/induzido quimicamente , Proteinose Alveolar Pulmonar/induzido quimicamente , Titânio/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/citologia , Relação Dose-Resposta a Droga , Feminino , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Pneumonia/patologia , Alvéolos Pulmonares/efeitos dos fármacos
8.
Part Fibre Toxicol ; 17(1): 38, 2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32771016

RESUMO

BACKGROUND: Diesel exhaust is carcinogenic and exposure to diesel particles cause health effects. We investigated the toxicity of diesel exhaust particles designed to have varying physicochemical properties in order to attribute health effects to specific particle characteristics. Particles from three fuel types were compared at 13% engine intake O2 concentration: MK1 ultra low sulfur diesel (DEP13) and the two renewable diesel fuels hydrotreated vegetable oil (HVO13) and rapeseed methyl ester (RME13). Additionally, diesel particles from MK1 ultra low sulfur diesel were generated at 9.7% (DEP9.7) and 17% (DEP17) intake O2 concentration. We evaluated physicochemical properties and histopathological, inflammatory and genotoxic responses on day 1, 28, and 90 after single intratracheal instillation in mice compared to reference diesel particles and carbon black. RESULTS: Moderate variations were seen in physical properties for the five particles: primary particle diameter: 15-22 nm, specific surface area: 152-222 m2/g, and count median mobility diameter: 55-103 nm. Larger differences were found in chemical composition: organic carbon/total carbon ratio (0.12-0.60), polycyclic aromatic hydrocarbon content (1-27 µg/mg) and acid-extractable metal content (0.9-16 µg/mg). Intratracheal exposure to all five particles induced similar toxicological responses, with different potency. Lung particle retention was observed in DEP13 and HVO13 exposed mice on day 28 post-exposure, with less retention for the other fuel types. RME exposure induced limited response whereas the remaining particles induced dose-dependent inflammation and acute phase response on day 1. DEP13 induced acute phase response on day 28 and inflammation on day 90. DNA strand break levels were not increased as compared to vehicle, but were increased in lung and liver compared to blank filter extraction control. Neutrophil influx on day 1 correlated best with estimated deposited surface area, but also with elemental carbon, organic carbon and PAHs. DNA strand break levels in lung on day 28 and in liver on day 90 correlated with acellular particle-induced ROS. CONCLUSIONS: We studied diesel exhaust particles designed to differ in physicochemical properties. Our study highlights specific surface area, elemental carbon content, PAHs and ROS-generating potential as physicochemical predictors of diesel particle toxicity.


Assuntos
Gasolina/toxicidade , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Emissões de Veículos/toxicidade , Animais , Carbono , Carcinógenos , Dano ao DNA , Pulmão , Camundongos , Camundongos Endogâmicos C57BL
9.
Toxicol Appl Pharmacol ; 375: 17-31, 2019 07 15.
Artigo em Espanhol | MEDLINE | ID: mdl-31075343

RESUMO

Multi-walled carbon nanotubes (MWCNTs), which vary in length, diameter, functionalization and specific surface area, are used in diverse industrial processes. Since these nanomaterials have a high aspect ratio and are biopersistant in the lung, there is a need for a rapid identification of their potential health hazard. We assessed in Sprague-Dawley rats the pulmonary toxicity of two pristine MWCNTs (the "long and thick" NM-401 and the "short and thin" NM-403) following either intratracheal instillation or 4-week inhalation in order to gain insights into the predictability and intercomparability of the two methods. The deposited doses following inhalation were lower than the instilled doses. Both types of carbon nanotube induced pulmonary neutrophil influx using both exposure methods. This influx correlated with deposited surface area across MWCNT types and means of exposure at two different time points, 1-3 days and 28-30 days post-exposure. Increased levels of DNA damage were observed across doses and time points for both exposure methods, but no dose-response relationship was observed. Intratracheal instillation of NM-401 induced fibrosis at the highest dose while lower lung deposited doses obtained by inhalation did not induce such lung pathology. No fibrosis was observed following NM-403 exposure. When the deposited dose was taken into account, sub-acute inhalation and a single instillation of NM-401 and NM-403 produced very similar inflammation and DNA damage responses. Our data suggest that the dose-dependent inflammatory responses observed after intratracheal instillation and inhalation of MWCNTs are similar and were predicted by the deposited surface area.


Assuntos
Pneumopatias/induzido quimicamente , Nanotubos de Carbono/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/citologia , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Vias de Administração de Medicamentos , Exposição por Inalação , Ratos , Ratos Sprague-Dawley
10.
Part Fibre Toxicol ; 15(1): 2, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298701

RESUMO

BACKGROUND: Little is known about the mechanism underlying the genotoxicity observed in the liver following pulmonary exposure to carbon black (CB) nanoparticles (NPs). The genotoxicity could be caused by the presence of translocated particles or by circulating inflammatory mediators released during pulmonary inflammation and acute-phase response. To address this, we evaluated induction of pulmonary inflammation, pulmonary and hepatic acute-phase response and genotoxicity following exposure to titanium dioxide (TiO2), cerium oxide (CeO2) or CB NPs. Female C57BL/6 mice were exposed by intratracheal instillation, intravenous injection or oral gavage to a single dose of 162 µg NPs/mouse and terminated 1, 28 or 180 days post-exposure alongside vehicle control. RESULTS: Liver DNA damage assessed by the Comet Assay was observed after intravenous injection and intratracheal instillation of CB NPs but not after exposure to TiO2 or CeO2. Intratracheal exposure to NPs resulted in pulmonary inflammation in terms of increased neutrophils influx for all NPs 1 and 28 days post-exposure. Persistent pulmonary acute phase response was detected for all NPs at all three time points while only a transient induction of hepatic acute phase response was observed. All 3 materials were detected in the liver by enhanced darkfield microscopy up to 180 days post-exposure. In contrast to TiO2 and CeO2 NPs, CB NPs generated ROS in an acellular assay. CONCLUSIONS: Our results suggest that the observed hepatic DNA damage following intravenous and intratracheal dosing with CB NPs was caused by the presence of translocated, ROS-generating, particles detected in the liver rather than by the secondary effects of pulmonary inflammation or hepatic acute phase response.


Assuntos
Dano ao DNA , Exposição por Inalação/efeitos adversos , Fígado/efeitos dos fármacos , Mutagênicos/toxicidade , Nanopartículas/toxicidade , Fuligem/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Feminino , Injeções Intravenosas , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mutagênicos/farmacocinética , Pneumonia/sangue , Pneumonia/induzido quimicamente , Pneumonia/genética , Fuligem/farmacocinética
11.
Crit Rev Toxicol ; 47(10): 867-884, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28937307

RESUMO

Carbon nanotube (CNT) is a nanomaterial that has received interest because of its high-tensile strength and low weight. Although CNTs differ substantially in physico-chemical properties, they share high aspect ratio which resembles that of asbestos and other fibers causing lung cancer and mesothelioma. One type of multi-walled CNTs (i.e. MWCNT-7) has been classified as possibly carcinogenic to humans by IARC (Group 2B) based on experimental animal data, whereas other types of MWCNTs and single-walled CNTs (SWCNT) could not be classified due to lack of data from epidemiologic studies and insufficient mechanistic evidence. Damage to DNA is considered to be a key mechanistic step in the development of fiber-induced cancer. Thus, the genotoxic potential can be a cornerstone in the evaluation of hazards of CNTs. The present study used a weight of evidence (WoE) analysis to evaluate the genotoxicity of different types of CNTs. Genotoxicity endpoints close to cancer (mutations and chromosome aberrations) and animal models had highest weight in the WoE analysis. Eight CNT materials out of 130, which had been assessed in several studies, were evaluated in the WoE analysis. The results demonstrated that MWCNT-7 has strongest WoE for a genotoxic hazard among the MWCNTs. Two types of SWCNTs have a similar WoE for genotoxicity as MWCNT-7. Several reference materials from the Joint Research Centre have less WoE for genotoxicity. The WoE analysis demonstrates a difference in genotoxicity for CNTs, but further research is required to unravel the physico-chemical characteristics that govern the differences in genotoxic hazard.


Assuntos
Dano ao DNA , Substâncias Perigosas/toxicidade , Nanotubos de Carbono/toxicidade , Humanos , Testes de Mutagenicidade
12.
Arch Toxicol ; 91(1): 353-363, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26872950

RESUMO

Nanoparticles (NP) have a tendency to agglomerate after dispersion in physiological media, which can be prevented by the addition of serum. This may however result in modification of the toxic potential of particles due to the formation of protein corona. Our study aimed to analyze the role of serum that is added to improve the dispersion of 10 nm TiO2 NPs on in vitro and in vivo effects following the exposure via the respiratory route. We characterized NP size, surface charge, sedimentation rate, the presence of protein corona and the oxidant-generating capacity after NP dispersion in the presence/absence of serum. The effect of serum on NP internalization, cytotoxicity and pro-inflammatory responses was assessed in a human pulmonary cell line, NCI-H292. Serum in the dispersion medium led to a slower sedimentation, but an enhanced cellular uptake of TiO2 NPs. Despite this greater uptake, the pro-inflammatory response in NCI-H292 cells was lower after serum supplementation (used either as a dispersant or as a cell culture additive), which may be due to a reduced intrinsic oxidative potential of TiO2 NPs. Interestingly, serum could be added 2 h after the NP treatment without affecting the pro-inflammatory response. We also determined the acute pulmonary and hepatic toxicity in vivo 24 h after intratracheal instillation of TiO2 NPs in C57BL/6N mice. The use of serum resulted in an underestimation of the local acute inflammatory response in the lung, while a systemic response on glutathione reduction remained unaffected. In conclusion, serum as a dispersion agent for TiO2 NPs can lead to an underestimation of the acute pro-inflammatory response in vitro and in vivo. To avoid potential unwanted effects of dispersants and medium components, we recommend that the protocol of NM preparation should be thoroughly tested, and reflect as close as possible realistic exposure conditions.


Assuntos
Fígado/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Oxidantes/toxicidade , Veículos Farmacêuticos/química , Mucosa Respiratória/efeitos dos fármacos , Soro/química , Titânio/toxicidade , Absorção Fisiológica , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Feminino , Fígado/imunologia , Fígado/metabolismo , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Camundongos Endogâmicos C57BL , Oxidantes/administração & dosagem , Oxidantes/química , Oxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Distribuição Aleatória , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Propriedades de Superfície , Suspensões , Titânio/administração & dosagem , Titânio/química , Titânio/metabolismo , Testes de Toxicidade Aguda
13.
Crit Rev Toxicol ; 46(5): 437-76, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27028752

RESUMO

Exposure to particulate matter (PM) from traffic vehicles is hazardous to the vascular system, leading to clinical manifestations and mortality due to ischemic heart disease. By analogy, nanomaterials may also be associated with the same outcomes. Here, the effects of exposure to PM from ambient air, diesel exhaust and certain nanomaterials on atherosclerosis and vasomotor function in animals have been assessed. The majority of studies have used pulmonary exposure by inhalation or instillation, although there are some studies on non-pulmonary routes such as the gastrointestinal tract. Airway exposure to air pollution particles and nanomaterials is associated with similar effects on atherosclerosis progression, augmented vasoconstriction and blunted vasorelaxation responses in arteries, whereas exposure to diesel exhaust is associated with lower responses. At present, there is no convincing evidence of dose-dependent effects across studies. Oxidative stress and inflammation have been observed in the arterial wall of PM-exposed animals with vasomotor dysfunction or plaque progression. From the data, it is evident that pulmonary and systemic inflammation does not seem to be necessary for these vascular effects to occur. Furthermore, there is inconsistent evidence with regard to altered plasma lipid profile and systemic inflammation as a key step in vasomotor dysfunction and progression of atherosclerosis in PM-exposed animals. In summary, the results show that certain nanomaterials, including TiO2, carbon black and carbon nanotubes, have similar hazards to the vascular system as combustion-derived PM.


Assuntos
Aterosclerose/induzido quimicamente , Nanoestruturas/toxicidade , Material Particulado/toxicidade , Animais , Aterosclerose/fisiopatologia , Humanos , Material Particulado/intoxicação , Sistema Vasomotor/efeitos dos fármacos , Sistema Vasomotor/fisiopatologia
14.
Part Fibre Toxicol ; 13(1): 37, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27357593

RESUMO

BACKGROUND: The toxicity of dusts from mechanical abrasion of multi-walled carbon nanotube (CNT) epoxy nanocomposites is unknown. We compared the toxic effects of dusts generated by sanding of epoxy composites with and without CNT. The used CNT type was included for comparison. METHODS: Mice received a single intratracheal instillation of 18, 54 and 162 µg of CNT or 54, 162 and 486 µg of the sanding dust from epoxy composite with and without CNT. DNA damage in lung and liver, lung inflammation and liver histology were evaluated 1, 3 and 28 days after intratracheal instillation. Furthermore, the mRNA expression of interleukin 6 and heme oxygenase 1 was measured in the lungs and serum amyloid A1 in the liver. Printex 90 carbon black was included as a reference particle. RESULTS: Pulmonary exposure to CNT and all dusts obtained by sanding epoxy composite boards resulted in recruitment of inflammatory cells into lung lumen: On day 1 after instillation these cells were primarily neutrophils but on day 3, eosinophils contributed significantly to the cell population. There were still increased numbers of neutrophils 28 days after intratracheal instillation of the highest dose of the epoxy dusts. Both CNT and epoxy dusts induced DNA damage in lung tissue up to 3 days after intratracheal instillation but not in liver tissue. There was no additive effect of adding CNT to epoxy resins for any of the pulmonary endpoints. In livers of mice instilled with CNT and epoxy dust with CNTs inflammatory and necrotic histological changes were observed, however, not in mice instilled with epoxy dust without CNT. CONCLUSIONS: Pulmonary deposition of epoxy dusts with and without CNT induced inflammation and DNA damage in lung tissue. There was no additive effect of adding CNT to epoxies for any of the pulmonary endpoints. However, hepatic inflammatory and necrotic histopathological changes were seen in mice instilled with sanding dust from CNT-containing epoxy but not in mice instilled with reference epoxy.


Assuntos
Compostos de Epóxi/toxicidade , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/citologia , Endotoxinas/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Pulmão/patologia , Camundongos , Microscopia Eletrônica de Varredura
15.
Anal Bioanal Chem ; 406(16): 3863-73, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24448971

RESUMO

Ultrastructural characterisation is important for understanding carbon nanotube (CNT) toxicity and how the CNTs interact with cells and tissues. The standard method for this involves using transmission electron microscopy (TEM). However, in particular, the sample preparation, using a microtome to cut thin sample sections for TEM, can be challenging for investigation of regions with agglomerations of large and stiff CNTs because the CNTs cut with difficulty. As a consequence, the sectioning diamond knife may be damaged and the uncut CNTs are left protruding from the embedded block surface excluding them from TEM analysis. To provide an alternative to ultramicrotomy and subsequent TEM imaging, we studied focused ion beam scanning electron microscopy (FIB-SEM) of CNTs in the lungs of mice, and we evaluated the applicability of the method compared to TEM. FIB-SEM can provide serial section volume imaging not easily obtained with TEM, but it is time-consuming to locate CNTs in the tissue. We demonstrate that protruding CNTs after ultramicrotomy can be used to locate the region of interest, and we present FIB-SEM images of CNTs in lung tissue. FIB-SEM imaging was applied to lung tissue from mice which had been intratracheally instilled with two different multiwalled CNTs; one being short and thin, and the other longer and thicker. FIB-SEM was found to be most suitable for detection of the large CNTs (Ø ca. 70 nm), and to be well suited for studying CNT agglomerates in biological samples which is challenging using standard TEM techniques.


Assuntos
Pulmão/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Nanotubos de Carbono/ultraestrutura , Animais , Feminino , Pulmão/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura/instrumentação , Nanotubos de Carbono/toxicidade
16.
Arch Toxicol ; 88(11): 1939-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25212906

RESUMO

The development of products containing carbon nanotubes (CNTs) is a major achievement of nanotechnology, although concerns regarding risk of toxic effects linger if the hazards associated with these materials are not thoroughly investigated. Exposure to CNTs has been associated with depletion of antioxidants, increased intracellular production of reactive oxygen species and pro-inflammatory signaling in cultured cells with primary function in the immune system as well as epithelial, endothelial and stromal cells. Pre-treatment with antioxidants has been shown to attenuate these effects, indicating a dependency of oxidative stress on cellular responses to CNT exposure. CNT-mediated oxidative stress in cell cultures has been associated with elevated levels of lipid peroxidation products and oxidatively damaged DNA. Investigations of oxidative stress endpoints in animal studies have utilized pulmonary, gastrointestinal, intravenous and intraperitoneal exposure routes, documenting elevated levels of lipid peroxidation products and oxidatively damaged DNA nucleobases especially in the lungs and liver, which to some extent occur concomitantly with altered levels of components in the antioxidant defense system (glutathione, superoxide dismutase or catalase). CNTs are biopersistent high aspect ratio materials, and some are rigid with lengths that lead to frustrated phagocytosis and pleural accumulation. There is accumulating evidence showing that pulmonary exposure to CNTs is associated with fibrosis and neoplastic changes in the lungs, and cardiovascular disease. As oxidative stress and inflammation responses are implicated in the development of these diseases, converging lines of evidence indicate that exposure to CNTs is associated with increased risk of cardiopulmonary diseases through generation of a pro-inflammatory and pro-oxidant milieu in the lungs.


Assuntos
Antioxidantes/metabolismo , Nanotubos de Carbono/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/fisiopatologia , Dano ao DNA/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Pneumopatias/induzido quimicamente , Pneumopatias/fisiopatologia , Nanotecnologia , Espécies Reativas de Oxigênio/metabolismo
17.
Exp Dermatol ; 22(7): 464-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23800057

RESUMO

Black tattoo inks are composed of carbon nanoparticles, additives and water and may contain polycyclic aromatic hydrocarbons (PAHs). We aimed to clarify whether reactive oxygen species (ROS) induced by black inks in vitro is related to pigment chemistry, physico-chemical properties of the ink particles and the content of chemical additives and contaminants including PAHs. The study included nine brands of tattoo inks of six colours each (black, red, yellow, blue, green and white) and two additional black inks of different brands (n = 56). The ROS formation potential was determined by the dichlorofluorescein (DCFH) assay. A semiquantitative method was developed for screening extractable organic compounds in tattoo ink based on gas chromatography-mass spectrometry (GC-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Two black inks produced high amounts of ROS. Peroxyl radicals accounted for up to 72% of the free radicals generated, whereas hydroxyl radicals and H2O2 accounted for <14% and 16%, respectively. The same two inks aggregated strongly in water in contrast to the other black inks. They did not exhibit any shared pattern in PAHs and other organic substances. Aggregation was exclusively shared by all ink colours belonging to the same two brands. Ten of 11 black inks had PAH concentrations exceeding the European Council's recommended level, and all 11 exceeded the recommended level for benzo(a)pyrene. It is a new finding that aggregation of tattoo pigment particles correlates with ROS production and brand, independently of chemical composition including PAHs. ROS is hypothesized to be implicated in minor clinical symptoms.


Assuntos
Androsterona/análogos & derivados , Tinta , Hidrocarbonetos Policíclicos Aromáticos/análise , Espécies Reativas de Oxigênio/química , Pele/efeitos dos fármacos , Tatuagem/efeitos adversos , Androsterona/análise , Carbono/química , Fluoresceínas/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Luz , Microscopia Eletrônica de Varredura , Nanopartículas/análise , Nanopartículas/química , Tamanho da Partícula , Peróxidos/química
18.
Crit Rev Toxicol ; 43(1): 1-20, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23126553

RESUMO

PARTICLE_RISK was one of the first multidisciplinary projects funded by the European Commission's Framework Programme that was responsible for evaluating the implications of nanomaterial (NM) exposure on human health. This project was the basis for this review which identifies the challenges that exist within the assessment of NM risk. We have retrospectively reflected on the findings of completed nanotoxicology studies to consider what progress and advances have been made within the risk assessment of NMs, as well as discussing the direction that nanotoxicology research is taking and identifying the limitations and failings of existing research. We have reflected on what commonly encountered challenges exist and explored how these issues may be resolved. In particular, the following is discussed (i) NM selection (ii) NM physico-chemical characterisation; (iii) NM dispersion; (iv) selection of relevant doses and concentrations; (v) identification of relevant models, target sites and endpoints; (vi) development of alternatives to animal testing; and (vii) NM risk assessment. These knowledge gaps are relatively well recognised by the scientific community and recommendations as to how they may be overcome in the future are provided. It is hoped that this will help develop better defined hypothesis driven research in the future that will enable comprehensive risk assessments to be conducted for NMs. Importantly, the nanotoxicology community has responded and adapted to advances in knowledge over recent years to improve the approaches used to assess NM hazard, exposure and risk. It is vital to learn from existing information provided by ongoing or completed studies to avoid unnecessary duplication of effort, and to offer guidance on aspects of the experimental design that should be carefully considered prior to the start of a new study.


Assuntos
Nanoestruturas/toxicidade , Nanotecnologia/tendências , Toxicologia/métodos , Animais , Fenômenos Químicos , Humanos , Modelos Animais , Nanoestruturas/análise , Nanotecnologia/métodos , Medição de Risco , Testes de Toxicidade , Toxicologia/tendências
19.
Toxicology ; 499: 153662, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37923288

RESUMO

Many in vitro and in vivo studies have shown that exposure to carbon nanotubes (CNTs) is associated with inflammation, oxidative stress and genotoxicity, although there is a paucity of studies on these effects in the pleural cavity. In the present study, we investigated adverse outcomes of pleural exposure to multi-walled CNTs (MWCNT-7, NM-401 and NM-403) and single-walled CNTs (NM-411). Female C57BL/6 mice were exposed to 0.2 or 5 µg of CNTs by intra-pleural injection and sacrificed one-year post-exposure. Exposure to long and straight types of MWCNTs (i.e. MWCNT-7 and NM-401) was associated with decreased number of macrophages and increased number of neutrophils and eosinophils in pleural lavage fluid. Increased protein content in the pleural lavage fluid was also observed in mice exposed to MWCNT-7 and NM-401. The concentration of mesothelin was increased in mice exposed to MWCNT-7 and NM-411. Levels of DNA strand breaks and DNA oxidation damage, measured by the comet assay, were unaltered in cells from pleural scrape. Extra-pleural effects were seen in CNT exposed mice, including enlarged and pigmented mediastinal lymph nodes (all four types of CNTs), pericardial plaques (MWCNT-7 and NM-401), macroscopic abnormalities on the liver (MWCNT-7) and ovaries/uterus (NM-411). In conclusion, the results demonstrate that intra-pleural exposure to long and straight MWCNTs is associated with adverse outcomes. Certain observations such as increased content of mesothelin in pleural lavage fluid and ovarian/uterine abnormalities in mice exposed to NM-411 suggests that exposure to SWCNTs may also be associated with some adverse outcomes.


Assuntos
Nanotubos de Carbono , Animais , Feminino , Camundongos , DNA/metabolismo , Dano ao DNA , Pulmão/patologia , Mesotelina , Camundongos Endogâmicos C57BL , Nanotubos de Carbono/efeitos adversos , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade
20.
Part Fibre Toxicol ; 9: 4, 2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-22300483

RESUMO

BACKGROUND: Little is known of how the toxicity of nanoparticles is affected by the incorporation in complex matrices. We compared the toxic effects of the titanium dioxide nanoparticle UV-Titan L181 (NanoTiO2), pure or embedded in a paint matrix. We also compared the effects of the same paint with and without NanoTiO2. METHODS: Mice received a single intratracheal instillation of 18, 54 and 162 µg of NanoTiO2 or 54, 162 and 486 µg of the sanding dust from paint with and without NanoTiO2. DNA damage in broncheoalveolar lavage cells and liver, lung inflammation and liver histology were evaluated 1, 3 and 28 days after intratracheal instillation. Printex 90 was included as positive control. RESULTS: There was no additive effect of adding NanoTiO2 to paints: Therefore the toxicity of NanoTiO2 was reduced by inclusion into a paint matrix. NanoTiO2 induced inflammation in mice with severity similar to Printex 90. The inflammatory response of NanoTiO2 and Printex 90 correlated with the instilled surface area. None of the materials, except of Printex 90, induced DNA damage in lung lining fluid cells. The highest dose of NanoTiO2 caused DNA damage in hepatic tissue 1 day after intratracheal instillation. Exposure of mice to the dust from paints with and without TiO2 was not associated with hepatic histopathological changes. Exposure to NanoTiO2 or to Printex 90 caused slight histopathological changes in the liver in some of the mice at different time points. CONCLUSIONS: Pulmonary inflammation and DNA damage and hepatic histopathology were not changed in mice instilled with sanding dust from NanoTiO2 paint compared to paint without NanoTiO2. However, pure NanoTiO2 caused greater inflammation than NanoTiO2 embedded in the paint matrix.


Assuntos
Poeira , Pulmão/efeitos dos fármacos , Nanopartículas/toxicidade , Pintura/toxicidade , Titânio/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/citologia , Dano ao DNA , Feminino , Fibrose/patologia , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Pulmão/patologia , Pulmão/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Pneumonia/induzido quimicamente , Pneumonia/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA