Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Blood ; 141(10): 1209-1220, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36375119

RESUMO

Understanding the functional role of mutated genes in cancer is required to translate the findings of cancer genomics into therapeutic improvement. BTG1 is recurrently mutated in the MCD/C5 subtype of diffuse large B-cell lymphoma (DLBCL), which is associated with extranodal dissemination. Here, we provide evidence that Btg1 knock out accelerates the development of a lethal lymphoproliferative disease driven by Bcl2 overexpression. Furthermore, we show that the scaffolding protein BCAR1 is a BTG1 partner. Moreover, after BTG1 deletion or expression of BTG1 mutations observed in patients with DLBCL, the overactivation of the BCAR1-RAC1 pathway confers increased migration ability in vitro and in vivo. These modifications are targetable with the SRC inhibitor dasatinib, which opens novel therapeutic opportunities in BTG1 mutated DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B , Humanos , Linfoma Difuso de Grandes Células B/patologia , Mutação , Genes cdc , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína Substrato Associada a Crk/genética , Proteína Substrato Associada a Crk/metabolismo
2.
Pharmacology ; 109(4): 216-230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38569476

RESUMO

INTRODUCTION: Acute myeloid leukemia (AML) is a cancer of the hematopoietic system characterized by hyperproliferation of undifferentiated cells of the myeloid lineage. While most of AML therapies are focused toward tumor debulking, all-trans retinoic acid (ATRA) induces neutrophil differentiation in the AML subtype acute promyelocytic leukemia (APL). Macroautophagy has been extensively investigated in the context of various cancers and is often dysregulated in AML where it can have context-dependent pro- or anti-leukemogenic effects. On the contrary, the implications of chaperone-mediated autophagy (CMA) on the pathophysiology of diseases are still being explored and its role in AML remains elusive. METHODS: We took advantage of human AML primary samples and databases to analyze CMA gene expression and activity. Furthermore, we used ATRA-sensitive (NB4) and -resistant (NB4-R1) APL cells to further dissect a potential function for CMA in ATRA-mediated neutrophil differentiation. NB4-R1 cells are unique in that they do respond to retinoic acid transcriptionally but do not mature in response to retinoid signaling alone unless maturation is triggered by adding cyclic adenosine monophosphate. RESULTS: Here, we report that CMA-related mRNA transcripts are significantly higher expressed in immature hematopoietic cells as compared to neutrophils, contrasting the macroautophagy gene expression patterns. Accordingly, lysosomal degradation of an mCherry-KFERQ CMA reporter decreases during ATRA-induced differentiation of APL cells. On the other hand, using NB4-R1 cells we found that macroautophagy flux primed ATRA-resistant NB4-R1 cells to differentiate upon ATRA treatment but reduced the association of lysosome-associated membrane protein type 2A (LAMP-2A) and heat shock protein family A (Hsp70) member 8 (HSPA8), necessary for complete neutrophil maturation. Accordingly, depletion of HSPA8 attenuated CMA activity and facilitated APL cell differentiation. In contrast, maintaining high CMA activity by ectopic expression of LAMP-2A impeded APL differentiation. CONCLUSION: Overall, our findings suggest that APL neutrophil differentiation requires CMA inactivation and that this pathway predominantly depends on HSPA8 and is possibly assisted by other co-chaperones.


Assuntos
Diferenciação Celular , Autofagia Mediada por Chaperonas , Proteínas de Choque Térmico HSC70 , Leucemia Promielocítica Aguda , Tretinoína , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Leucemia Promielocítica Aguda/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Tretinoína/farmacologia , Autofagia Mediada por Chaperonas/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSC70/genética , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Antineoplásicos/farmacologia
3.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36835566

RESUMO

Circulating monocytes are recruited in damaged tissues to generate macrophages that modulate disease progression. Colony-stimulating factor-1 (CSF-1) promotes the generation of monocyte-derived macrophages, which involves caspase activation. Here, we demonstrate that activated caspase-3 and caspase-7 are located to the vicinity of the mitochondria in CSF1-treated human monocytes. Active caspase-7 cleaves p47PHOX at aspartate 34, which promotes the formation of the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase complex NOX2 and the production of cytosolic superoxide anions. Monocyte response to CSF-1 is altered in patients with a chronic granulomatous disease, which are constitutively defective in NOX2. Both caspase-7 down-regulation and radical oxygen species scavenging decrease the migration of CSF-1-induced macrophages. Inhibition or deletion of caspases prevents the development of lung fibrosis in mice exposed to bleomycin. Altogether, a non-conventional pathway that involves caspases and activates NOX2 is involved in CSF1-driven monocyte differentiation and could be therapeutically targeted to modulate macrophage polarization in damaged tissues.


Assuntos
Caspases , Fator Estimulador de Colônias de Macrófagos , Humanos , Animais , Camundongos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Caspase 7/metabolismo , Caspases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , NADPH Oxidases/metabolismo , Monócitos/metabolismo
4.
Mol Cancer ; 20(1): 12, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413419

RESUMO

Resistances to immunotherapies remains a major hurdle towards a cure for melanoma in numerous patients. An increase in the mesenchymal phenotype and a loss of differentiation have been clearly associated with resistance to targeted therapies. Similar phenotypes have been more recently also linked to resistance to immune checkpoint therapies. We demonstrated here that the loss of MIcrophthalmia associated Transcription Factor (MITF), a pivotal player in melanocyte differentiation, favors the escape of melanoma cells from the immune system. We identified Integrin beta-like protein 1 (ITGBL1), a secreted protein, upregulated in anti-PD1 resistant patients and in MITFlow melanoma cells, as the key immunomodulator. ITGBL1 inhibited immune cell cytotoxicity against melanoma cells by inhibiting NK cells cytotoxicity and counteracting beneficial effects of anti-PD1 treatment, both in vitro and in vivo. Mechanistically, MITF inhibited RUNX2, an activator of ITGBL1 transcription. Interestingly, VitaminD3, an inhibitor of RUNX2, improved melanoma cells to death by immune cells. In conclusion, our data suggest that inhibition of ITGBL1 might improve melanoma response to immunotherapies.


Assuntos
Carcinogênese/patologia , Citotoxicidade Imunológica , Fatores Imunológicos/metabolismo , Integrina beta1/metabolismo , Células Matadoras Naturais/imunologia , Melanoma/imunologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Melanoma/patologia , Camundongos Endogâmicos C57BL , Fator de Transcrição Associado à Microftalmia/metabolismo
5.
Int J Mol Sci ; 21(1)2019 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881723

RESUMO

Myelodysplastic syndrome (MDS) defines a group of heterogeneous hematologic malignancies that often progresses to acute myeloid leukemia (AML). The leading treatment for high-risk MDS patients is azacitidine (Aza, Vidaza®), but a significant proportion of patients are refractory and all patients eventually relapse after an undefined time period. Therefore, new therapies for MDS are urgently needed. We present here evidence that acadesine (Aca, Acadra®), a nucleoside analog exerts potent anti-leukemic effects in both Aza-sensitive (OCI-M2S) and resistant (OCI-M2R) MDS/AML cell lines in vitro. Aca also exerts potent anti-leukemic effect on bone marrow cells from MDS/AML patients ex-vivo. The effect of Aca on MDS/AML cell line proliferation does not rely on apoptosis induction. It is also noteworthy that Aca is efficient to kill MDS cells in a co-culture model with human medullary stromal cell lines, that mimics better the interaction occurring in the bone marrow. These initial findings led us to initiate a phase I/II clinical trial using Acadra® in 12 Aza refractory MDS/AML patients. Despite a very good response in one out 4 patients, we stopped this trial because the highest Aca dose (210 mg/kg) caused serious renal side effects in several patients. In conclusion, the side effects of high Aca doses preclude its use in patients with strong comorbidities.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Leucemia Mieloide Aguda/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico , Ribonucleosídeos/uso terapêutico , Idoso , Aminoimidazol Carboxamida/farmacologia , Aminoimidazol Carboxamida/uso terapêutico , Apoptose/efeitos dos fármacos , Azacitidina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/patologia , Recidiva , Ribonucleosídeos/farmacologia , Falha de Tratamento
6.
Int J Mol Sci ; 19(10)2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30274374

RESUMO

AMP-activated protein kinase (AMPK) is a heterotrimeric serine/threonine kinase consisting of the arrangement of various α ß, and γisoforms that are expressed differently depending on the tissue or the cell lineage. AMPK is one of the major sensors of energy status in mammalian cells and as such plays essential roles in the regulation of cellular homeostasis, metabolism, cell growth, differentiation, apoptosis, and autophagy. AMPK is activated by two upstream kinases, the tumor suppressor liver kinase B1 (LKB1) and the calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) through phosphorylation of the kinase on Thr172, leading to its activation. In addition, AMPK inhibits the mTOR pathway through phosphorylation and activation of tuberous sclerosis protein 2 (TSC2) and causes direct activation of unc-51-like autophagy activating kinase 1 (ULK1) via phosphorylation of Ser555, thus promoting initiation of autophagy. Although it is well established that AMPK can control the differentiation of different cell lineages, including hematopoietic stem cells (HSCs), progenitors, and mature hematopoietic cells, the role of AMPK regarding myeloid cell differentiation is less documented. The differentiation of monocytes into macrophages triggered by colony stimulating factor 1 (CSF-1), a process during which both caspase activation (independently of apoptosis induction) and AMPK-dependent stimulation of autophagy are necessary, is one noticeable example of the involvement of AMPK in the physiological differentiation of myeloid cells. The present review focuses on the role of AMPK in the regulation of the physiological and pathological differentiation of myeloid cells. The mechanisms of autophagy induction by AMPK will also be addressed, as autophagy has been shown to be important for differentiation of hematopoietic cells. In addition, myeloid malignancies (myeloid leukemia or dysplasia) are characterized by profound defects in the establishment of proper differentiation programs. Reinduction of a normal differentiation process in myeloid malignancies has thus emerged as a valuable and promising therapeutic strategy. As AMPK seems to exert a key role in the differentiation of myeloid cells, notably through induction of autophagy, we will also discuss the potential to target this pathway as a pro-differentiating and anti-leukemic strategy in myeloid malignancies.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diferenciação Celular , Células Mieloides/enzimologia , Células Mieloides/patologia , Proteínas Quinases Ativadas por AMP/química , Animais , Ativação Enzimática , Neoplasias Hematológicas/patologia , Células-Tronco Hematopoéticas/patologia , Humanos
7.
Br J Cancer ; 117(7): 947-953, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28850564

RESUMO

BACKGROUND: Sunitinib is one of the first-line standard treatments for metastatic clear cell renal cell carcinoma (ccRCC) with a median time to progression shorter than 1 year. The objective is to discover predictive markers of response to adapt the treatment at diagnosis. METHODS: Prospective phase 2 multi-centre trials were conducted in ccRCC patients initiating sunitinib (54 patients) or bevacizumab (45 patients) in the first-line metastatic setting (SUVEGIL and TORAVA trials). The plasmatic level of CXCL7 at baseline was correlated with progression-free survival (PFS). RESULTS: The cut-off value of CXCL7 for PFS was 250 ng ml-1. Patients with CXCL7 plasmatic levels above the cut-off at baseline (250 ng ml-1) had a significantly longer PFS (hazard ratio 0.323 (95% confidence interval 0.147-0.707), P=0.001). These results were confirmed in a retrospective validation cohort. The levels of CXCL7 did not influence PFS of the bevacizumab-treated patients. CONCLUSIONS: CXCL7 may be considered as a predictive marker of sunitinib efficacy for ccRCC patients.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma de Células Renais/sangue , Carcinoma de Células Renais/tratamento farmacológico , Indóis/uso terapêutico , Neoplasias Renais/sangue , Neoplasias Renais/tratamento farmacológico , Pirróis/uso terapêutico , beta-Tromboglobulina/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bevacizumab/administração & dosagem , Biomarcadores Tumorais/sangue , Carcinoma de Células Renais/secundário , Carcinoma de Células Renais/cirurgia , Intervalo Livre de Doença , Feminino , Humanos , Neoplasias Renais/patologia , Neoplasias Renais/cirurgia , Células Matadoras Naturais , Linfócitos do Interstício Tumoral , Macrófagos , Masculino , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Transplante de Neoplasias , Nefrectomia , Neutrófilos , Estudos Prospectivos , Estudos Retrospectivos , Sirolimo/administração & dosagem , Sirolimo/análogos & derivados , Sunitinibe , Taxa de Sobrevida
8.
PLoS Pathog ; 11(3): e1004732, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25781937

RESUMO

The detection of the activities of pathogen-encoded virulence factors by the innate immune system has emerged as a new paradigm of pathogen recognition. Much remains to be determined with regard to the molecular and cellular components contributing to this defense mechanism in mammals and importance during infection. Here, we reveal the central role of the IL-1ß signaling axis and Gr1+ cells in controlling the Escherichia coli burden in the blood in response to the sensing of the Rho GTPase-activating toxin CNF1. Consistently, this innate immune response is abrogated in caspase-1/11-impaired mice or following the treatment of infected mice with an IL-1ß antagonist. In vitro experiments further revealed the synergistic effects of CNF1 and LPS in promoting the maturation/secretion of IL-1ß and establishing the roles of Rac, ASC and caspase-1 in this pathway. Furthermore, we found that the α-hemolysin toxin inhibits IL-1ß secretion without affecting the recruitment of Gr1+ cells. Here, we report the first example of anti-virulence-triggered immunity counteracted by a pore-forming toxin during bacteremia.


Assuntos
Toxinas Bacterianas/imunologia , Infecções por Escherichia coli/imunologia , Proteínas de Escherichia coli/imunologia , Proteínas Hemolisinas/imunologia , Imunidade Inata/imunologia , Transdução de Sinais/imunologia , Animais , Bacteriemia/imunologia , Modelos Animais de Doenças , Escherichia coli/imunologia , Escherichia coli/patogenicidade , Feminino , Interações Hospedeiro-Patógeno/imunologia , Interleucina-1beta/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Virulência , Fatores de Virulência/imunologia
10.
Blood ; 122(20): 3521-32, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24014241

RESUMO

Cancer cells require nutrients and energy to adapt to increased biosynthetic activity, and protein synthesis inhibition downstream of mammalian target of rapamycin complex 1 (mTORC1) has shown promise as a possible therapy for acute myeloid leukemia (AML). Glutamine contributes to leucine import into cells, which controls the amino acid/Rag/mTORC1 signaling pathway. We show in our current study that glutamine removal inhibits mTORC1 and induces apoptosis in AML cells. The knockdown of the SLC1A5 high-affinity transporter for glutamine induces apoptosis and inhibits tumor formation in a mouse AML xenotransplantation model. l-asparaginase (l-ase) is an anticancer agent also harboring glutaminase activity. We show that l-ases from both Escherichia coli and Erwinia chrysanthemi profoundly inhibit mTORC1 and protein synthesis and that this inhibition correlates with their glutaminase activity levels and produces a strong apoptotic response in primary AML cells. We further show that l-ases upregulate glutamine synthase (GS) expression in leukemic cells and that a GS knockdown enhances l-ase-induced apoptosis in some AML cells. Finally, we observe a strong autophagic process upon l-ase treatment. These results suggest that l-ase anticancer activity and glutamine uptake inhibition are promising new therapeutic strategies for AML.


Assuntos
Glutamina/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Sistema ASC de Transporte de Aminoácidos/genética , Animais , Apoptose/efeitos dos fármacos , Asparaginase/isolamento & purificação , Asparaginase/farmacologia , Autofagia/efeitos dos fármacos , Proteínas de Bactérias/farmacologia , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Dickeya chrysanthemi/enzimologia , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Escherichia coli/farmacologia , Feminino , Glutaminase/isolamento & purificação , Glutaminase/farmacologia , Glutamina/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mielomonocítica Aguda/tratamento farmacológico , Leucemia Mielomonocítica Aguda/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor , Complexos Multiproteicos/antagonistas & inibidores , Biossíntese de Proteínas/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
11.
Blood ; 119(19): 4527-31, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22452982

RESUMO

Autophagy is the process by which superfluous or damaged macromolecules or organelles are degraded by the lysosome. Pharmacologic and genetic evidence indicates that autophagy plays pleiotropic functions in cellular homeostasis, development, survival, and differentiation. The differentiation of human blood monocytes into macrophages is a caspase-dependent process when triggered ex vivo by colony stimulating factor-1. We show here, using pharmacologic inhibitors, siRNA approaches, and Atg7-/- mice, that autophagy initiated by ULK1 is required for proper colony stimulating factor-1-driven differentiation of human and murine monocytes. We also unravel a role for autophagy in macrophage acquisition of phagocytic functions. Collectively, these findings highlight an unexpected and essential role of autophagy during monocyte differentiation and acquisition of macrophage functions.


Assuntos
Autofagia/fisiologia , Diferenciação Celular/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína 7 Relacionada à Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Catepsina B/farmacologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Macrófagos/fisiologia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/fisiologia , Fagocitose/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , RNA Interferente Pequeno/farmacologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-38509196

RESUMO

Malnutrition increases the risk of non-relapse mortality after allogeneic stem cell transplantation (aHSCT). Here are the results of the ALLONUT clinical trial designed to improve the nutritional outcome of patients receiving aHSCT. ALLONUT is a prospective open label phase 2 clinical trial assessing the efficacy of a close tailored nutritional support and management with traditional and original solutions to improve patients nutritional status following aHSCT. Nutritional status evaluation was performed before transplantation, on Day 0, 30, 100 and one year after transplantation. The study involved 70 patients treated by aHSCT. 10% of patients were moderately or severely malnutrition at baseline and 26.9 were severely malnutrition at D30. Patients' nutritional status improved thanks to the cooking classes and the personalized outpatient nutrition program. At D100, 23% were still malnutrition, while only 10.8% were severely malnutrition one year after transplantation. The QLQ-C30 show that quality of life (QoL) decreased until D30, and improve to reach the pre-transplant level on D100 before exceeding it on D360. The study confirmed that a close, personalized nutritional program combining traditional and original measures can improve both nutritional status and QoL for patients suffering from moderate or severe malnutrition after aHCST.

13.
J Exp Clin Cancer Res ; 43(1): 86, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504270

RESUMO

BACKGROUND: In clear cell renal cell carcinoma (ccRCC), first-line treatment combines nivolumab (anti-PD-1) and ipilimumab (anti-CTLA4), yielding long-term remissions but with only a 40% success rate. Our study explored the potential of enhancing ccRCC treatment by concurrently using CXCR2 inhibitors alongside immunotherapies. METHODS: We analyzed ELR + CXCL levels and their correlation with patient survival during immunotherapy. RCT001, a unique CXCR2 inhibitor, was examined for its mechanism of action, particularly its effects on human primary macrophages. We tested the synergistic impact of RCT001 in combination with immunotherapies in both mouse models of ccRCC and human ccRCC in the presence of human PBMC. RESUTS: Elevated ELR + CXCL cytokine levels were found to correlate with reduced overall survival during immunotherapy. RCT001, our optimized compound, acted as an inverse agonist, effectively inhibiting angiogenesis and reducing viability of primary ccRCC cells. It redirected M2-like macrophages without affecting M1-like macrophage polarization directed against the tumor. In mouse models, RCT001 enhanced the efficacy of anti-CTLA4 + anti-PD1 by inhibiting tumor-associated M2 macrophages and tumor-associated neutrophils. It also impacted the activation of CD4 T lymphocytes, reducing immune-tolerant lymphocytes while increasing activated natural killer and dendritic cells. Similar effectiveness was observed in human RCC tumors when RCT001 was combined with anti-PD-1 treatment. CONCLUSIONS: RCT001, by inhibiting CXCR2 through its unique mechanism, effectively suppresses ccRCC cell proliferation, angiogenesis, and M2 macrophage polarization. This optimization potentiates the efficacy of immunotherapy and holds promise for significantly improving the survival prospects of metastatic ccRCC patients.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Agonismo Inverso de Drogas , Leucócitos Mononucleares/patologia , Imunoterapia
14.
Blood ; 118(17): 4694-704, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21876121

RESUMO

M-CSF-driven differentiation of peripheral blood monocytes is one of the sources of tissue macrophages. In humans and mice, the differentiation process involves the activation of caspases that cleave a limited number of proteins. One of these proteins is nucleophosmin (NPM1), a multifunctional and ubiquitous protein. Here, we show that caspases activated in monocytes exposed to M-CSF cleave NPM1 at D213 to generate a 30-kDa N-terminal fragment. The protein is further cleaved into a 20-kDa fragment, which involves cathepsin B. NPM1 fragments contribute to the limited motility, migration, and phagocytosis capabilities of resting macrophages. Their activation with lipopolysaccharides inhibits proteolytic processes and restores expression of the full-length protein that negatively regulates the transcription of genes encoding inflammatory cytokines (eg, NPM1 is recruited with NF-κB on the MCP1 gene promoter to decrease its transcription). In mice with heterozygous npm gene deletion, cytokine production in response to lipopolysaccharides, including CXCL1 (KC), MCP1, and MIP2, is dramatically enhanced. These results indicate a dual function of NPM1 in M-CSF-differentiated macrophages. Proteolysis of the protein participates in the establishment of a mature macrophage phenotype. In response to inflammatory stimuli, the full-length protein negatively regulates inflammatory cytokine production.


Assuntos
Diferenciação Celular , Ativação de Macrófagos , Macrófagos/fisiologia , Proteínas Nucleares/fisiologia , Animais , Caspases/metabolismo , Catepsinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Humanos , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Ativação de Macrófagos/fisiologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia
15.
Front Immunol ; 14: 1178337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143666

RESUMO

Macrophages are immune cells that originate from embryogenesis or from the differentiation of monocytes. They can adopt numerous phenotypes depending on their origin, tissue distribution and in response to different stimuli and tissue environment. Thus, in vivo, macrophages are endowed with a continuum of phenotypes that are rarely strictly pro-inflammatory or anti-inflammatory and exhibit a broad expression profile that sweeps over the whole polarization spectrum. Schematically, three main macrophage subpopulations coexist in human tissues: naïve macrophages also called M0, pro-inflammatory macrophages referred as M1 macrophages, and anti-inflammatory macrophages also known as M2 macrophages. Naïve macrophages display phagocytic functions, recognize pathogenic agents, and rapidly undergo polarization towards pro or anti-inflammatory macrophages to acquire their full panel of functions. Pro-inflammatory macrophages are widely involved in inflammatory response, during which they exert anti-microbial and anti-tumoral functions. By contrast, anti-inflammatory macrophages are implicated in the resolution of inflammation, the phagocytosis of cell debris and tissue reparation following injuries. Macrophages also play important deleterious or beneficial roles in the initiation and progression of different pathophysiological settings including solid and hematopoietic cancers. A better understanding of the molecular mechanisms involved in the generation, activation and polarization of macrophages is a prerequisite for the development of new therapeutic strategies to modulate macrophages functions in pathological situations.


Assuntos
Macrófagos , Neoplasias , Humanos , Monócitos , Fagocitose , Neoplasias/metabolismo , Anti-Inflamatórios/farmacologia
16.
Leukemia ; 37(3): 571-579, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36585521

RESUMO

Pediatric acute myeloid leukemia expressing the ETO2::GLIS2 fusion oncogene is associated with dismal prognosis. Previous studies have shown that ETO2::GLIS2 can efficiently induce leukemia development associated with strong transcriptional changes but those amenable to pharmacological targeting remained to be identified. By studying an inducible ETO2::GLIS2 cellular model, we uncovered that de novo ETO2::GLIS2 expression in human cells led to increased CASP3 transcription, CASP3 activation, and cell death. Patient-derived ETO2::GLIS2+ leukemic cells expressed both high CASP3 and high BCL2. While BCL2 inhibition partly inhibited ETO2::GLIS2+ leukemic cell proliferation, BH3 profiling revealed that it also sensitized these cells to MCL1 inhibition indicating a functional redundancy between BCL2 and MCL1. We further show that combined inhibition of BCL2 and MCL1 is mandatory to abrogate disease progression using in vivo patient-derived xenograft models. These data reveal that a transcriptional consequence of ETO2::GLIS2 expression includes a positive regulation of the pro-apoptotic CASP3 and associates with a vulnerability to combined targeting of two BCL2 family members providing a novel therapeutic perspective for this aggressive pediatric AML subgroup.


Assuntos
Leucemia Mieloide , Fatores de Transcrição , Criança , Humanos , Caspase 3 , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Prognóstico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
17.
Blood ; 115(1): 78-88, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19864642

RESUMO

Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic disorder that occurs in elderly patients. One of the main diagnostic criteria is the accumulation of heterogeneous monocytes in the peripheral blood. We further explored this cellular heterogeneity and observed that part of the leukemic clone in the peripheral blood was made of immature dysplastic granulocytes with a CD14(-)/CD24(+) phenotype. The proteome profile of these cells is dramatically distinct from that of CD14(+)/CD24(-) monocytes from CMML patients or healthy donors. More specifically, CD14(-)/CD24(+) CMML cells synthesize and secrete large amounts of alpha-defensin 1-3 (HNP1-3). Recombinant HNPs inhibit macrophage colony-stimulating factor (M-CSF)-driven differentiation of human peripheral blood monocytes into macrophages. Using transwell, antibody-mediated depletion, suramin inhibition of purinergic receptors, and competitive experiments with uridine diphosphate (UDP)/uridine triphosphate (UTP), we demonstrate that HNP1-3 secreted by CD14(-)/CD24(+) cells inhibit M-CSF-induced differentiation of CD14(+)/CD24(-) cells at least in part through P2Y6, a receptor involved in macrophage differentiation. Altogether, these observations suggest that a population of immature dysplastic granulocytes contributes to the CMML phenotype through production of alpha-defensins HNP1-3 that suppress the differentiation capabilities of monocytes.


Assuntos
Diferenciação Celular , Granulócitos/metabolismo , Granulócitos/patologia , Leucemia Mielomonocítica Crônica/patologia , Monócitos/patologia , alfa-Defensinas/metabolismo , Antígeno CD24/metabolismo , Diferenciação Celular/efeitos dos fármacos , Citocinas/biossíntese , Granulócitos/efeitos dos fármacos , Humanos , Leucemia Mielomonocítica Crônica/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Receptores Purinérgicos P2/metabolismo , Difosfato de Uridina/farmacologia , Uridina Trifosfato/farmacologia , alfa-Defensinas/farmacologia
18.
Oncoimmunology ; 11(1): 2015859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251769

RESUMO

Macrophages are widely distributed innate immune cells that play an indispensable role in a variety of physiologic and pathologic processes, including organ development, host defense, acute and chronic inflammation, solid and hematopoietic cancers. Beyond their inextricable role as conveyors of programmed cell death, we have previously highlighted that caspases exert non-apoptotic functions, especially during the differentiation of monocyte-derived cells in response to CSF-1. Here, we found that non-canonic cleavages of caspases, reflecting their activation, are maintained during IL-4-induced monocyte-derived macrophages polarization. Moreover, Emricasan, a pan-caspase inhibitor that demonstrated promising preclinical activity in various diseases and safely entered clinical testing for the treatment of liver failure, prevents the generation and the anti-inflammatory polarization of monocyte-derived macrophages ex vivo. Interestingly, caspase inhibition also triggered the reprogramming of monocyte-derived cells evidenced by RNA sequencing. Taken together, our findings position Emricasan as a potential alternative to current therapies for reprogramming macrophages in diseases driven by monocyte-derived macrophages.


Assuntos
Caspases , Macrófagos , Inibidores de Caspase/metabolismo , Inibidores de Caspase/farmacologia , Caspases/metabolismo , Diferenciação Celular , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo
19.
Cell Rep ; 38(1): 110197, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986346

RESUMO

AMP-activated protein kinase (AMPK) regulates the balance between cellular anabolism and catabolism dependent on energy resources to maintain proliferation and survival. Small-compound AMPK activators show anti-cancer activity in preclinical models. Using the direct AMPK activator GSK621, we show that the unfolded protein response (UPR) is activated by AMPK in acute myeloid leukemia (AML) cells. Mechanistically, the UPR effector protein kinase RNA-like ER kinase (PERK) represses oxidative phosphorylation, tricarboxylic acid (TCA) cycle, and pyrimidine biosynthesis and primes the mitochondrial membrane to apoptotic signals in an AMPK-dependent manner. Accordingly, in vitro and in vivo studies reveal synergy between the direct AMPK activator GSK621 and the Bcl-2 inhibitor venetoclax. Thus, selective AMPK-activating compounds kill AML cells by rewiring mitochondrial metabolism that primes mitochondria to apoptosis by BH3 mimetics, holding therapeutic promise in AML.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Imidazóis/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Pirimidinonas/farmacologia , Sulfonamidas/farmacologia , Resposta a Proteínas não Dobradas/fisiologia , eIF-2 Quinase/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacologia , Apoptose/fisiologia , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Células HEK293 , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Células THP-1 , Células U937 , Adulto Jovem
20.
Nat Cancer ; 3(7): 837-851, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35668193

RESUMO

Selinexor is a first-in-class inhibitor of the nuclear exportin XPO1 that was recently approved by the US Food and Drug Administration for the treatment of multiple myeloma and diffuse large B-cell lymphoma. In relapsed/refractory acute myeloid leukemia (AML), selinexor has shown promising activity, suggesting that selinexor-based combination therapies may have clinical potential. Here, motivated by the hypothesis that selinexor's nuclear sequestration of diverse substrates imposes pleiotropic fitness effects on AML cells, we systematically catalog the pro- and anti-fitness consequences of selinexor treatment. We discover that selinexor activates PI3Kγ-dependent AKT signaling in AML by upregulating the purinergic receptor P2RY2. Inhibiting this axis potentiates the anti-leukemic effects of selinexor in AML cell lines, patient-derived primary cultures and multiple mouse models of AML. In a syngeneic, MLL-AF9-driven mouse model of AML, treatment with selinexor and ipatasertib outperforms both standard-of-care chemotherapy and chemotherapy with selinexor. Together, these findings establish drug-induced P2RY2-AKT signaling as an actionable consequence of XPO1 inhibition in AML.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-akt , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Carioferinas/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Estados Unidos , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA