Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Plant Dis ; 108(1): 190-199, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37537791

RESUMO

Mixed infections caused by multiple pathogenic and weakly pathogenic strains inhabiting the same host plants are common in nature and may modify pathogen dynamics. However, traditional plant pathogen studies have mostly focused on the binary interaction between a single host and a single pathogen. In this study, we have looked beyond this binary interaction and evaluated the impact of coinfection on disease dynamics on tomato using the bacterial spot pathogen Xanthomonas perforans (Xp), the co-occurring weakly pathogenic strain of X. arboricola (Xa), and the co-occurring potential weak pathogenic strain of Pseudomonas capsici (Pc). Time-series coinfection experiments monitoring disease severity and within-host population dynamics revealed higher disease severity in coinfection by three species compared with infection by Xp alone. However, coinfection by dual species, Xp and Pc, or Xa resulted in lower disease severity compared with Xp alone. Thus, coinfection outcomes depend on interacting species. Weak pathogens could exploit Xp to colonize the host plant as indicated by their higher populations in coinfection. However, Xp population dynamics were dependent on the coinfecting partner. While resource competition might be a possible explanation for lower Xp population in dual coinfection, interaction of Pc with the host was found to influence Xp population. Interestingly, Xp population was higher in the presence of three-species interaction compared with Xp and Xa coinfection, suggesting potential modulation of cooperative interactions among Xp and Xa in three-species coinfection rather than competitive interactions. Humidity played a significant role in population dynamics of the three species. Overall, this study highlighted the importance of coinfection dynamics in studying plant disease outbreaks.


Assuntos
Coinfecção , Solanum lycopersicum
2.
Artigo em Inglês | MEDLINE | ID: mdl-37737062

RESUMO

In 2015, Gram-positive peach-coloured actinobacterial strains were isolated from symptomless tomato phyllosphere in Iran. Biochemical and physiological characteristics, as well as 16S rRNA phylogeny showed that the strains belong to Clavibacter sp., while they were non-pathogenic on the host of isolation, and morphologically distinct from the tomato pathogen C. michiganensis and other plant-associated bacteria. Multilocus sequence analysis of five housekeeping genes showed that the two peach-coloured strains CFBP 8615T (Tom532T) and CFBP 8616 (Tom495) were phylogenetically distinct from all validly described Clavibacter species. Whole genome sequence-based indices, i.e. average nucleotide identity (orthoANI) and digital DNA-DNA hybridization (dDDH), showed that the two peach-colored strains share nearly 100 % orthoANI value with one another, while they differ from all validly described Clavibacter species with the orthoANI/dDDH values <93 % and <50 %, respectively. Thus, based on both phenotypic features and orthoANI/dDDH indices the peach-coloured strains could belong to a new species within Clavibacter. In this study, we provide a formal species description for the peach-coloured tomato-associated Clavibacter strains. Clavibacter lycopersici sp. nov. is proposed for the new species with Tom532T = CFBP 8615T = ICMP 22100T as type strain.


Assuntos
Actinobacteria , Solanum lycopersicum , Técnicas de Tipagem Bacteriana , Composição de Bases , Clavibacter , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Plant Dis ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037208

RESUMO

In October 2022, v-shaped necrotic lesions were observed on the leaf margins of field-grown winter oilseed rape (WOSR), Brassica napus L., in western France (Ille-et-Vilaine (35) and Maine-et-Loire (49) departments). Disease incidence on volunteers and cultivated WOSR was generally low (5-10 %) but occasionally up to 80% on some fields. Leaf sections sampled from the margin of necrotic leaf tissue were dilacerated in sterile deionized water and the extract was spread onto tryptone soya agar (TSA) with cycloheximide (100 mg.L-1) and Polyflor (Syngenta, France) (2ml.L-1, containing 5 mg.L-1 propiconazole) then incubated at 28°C for 2 days. Colonies were yellow-pigmented, mucoid, and convex, which are morphological characteristics of Xanthomonas spp. colonies. The partial fyuA and gyrB gene sequences were amplified for eight isolated strains (CFBP 9155, CFBP 9156, CFBP 9157, CFBP 9158, CFBP 9159, CFBP 9161, CFBP 9162, and CFBP 9163) using primers of Fargier et al. (2011), and sequenced (Genoscreen, France). The sequences were deposited under numbers OR232891 to OR232898 for fyuA and OR634932 to OR634939 for gyrB. BLASTN analysis of the sequenced fyuA amplicon showed 100% identity and query coverage with the fyuA fragment of Xanthomonas campestris pv. campestris (Xcc) CFBP 6865R (Bellenot et al., 2022). BLASTN analysis of the sequenced gyrB amplicon showed two allelic forms: one showed 100% identity and query coverage with the gyrB fragment of Xcc strain CFBP 6865R (Bellenot et al., 2022), the other one showed 100% identity and query coverage with the type strain Xcc CFBP 5241 (ATCC33913) (Vorhölter et al., 2003). Moreover, two qPCR tools were used to identify the strains successfully as Xcc (Köhl et al., 2011; Rezki et al., 2016) which target the same gene encoding a hypothetical protein and whose primers overlap. The pathogenicity of the eight isolated strains was validated using a bacterial suspension (108 CFU.ml-1) for i) leaf spraying until runoff onto the leaf surfaces of WOSR plants previously maintained at saturated humidity for 48 hours, ii) wound-leaf inoculation of the two youngest true leaves with scissors that had been dipped into the bacterial suspension. Both tests were performed on 3-week-old WOSR plants of the Aviso (INRAE) genotype. Deionized water was used as negative control. Strains CFBP 5241 and the strain CFBP 4954 (Fargier et al., 2007) were used as positive controls for disease expression. Tested plants (seven for spray inoculation and four for wound-leaf inoculation per strain and control condition) were incubated in a greenhouse at 20°C/24°C (night/day). Isolated strains and the strain CFBP 4954 caused yellow lesions with both inoculation methods that necrotized starting about 10 days post inoculation (dpi). The spots coalesced within 14 dpi to form necrotic areas. The type strain CFBP 5241 caused mild symptoms, with only yellow lesions that did not coalesce. Plants inoculated with water remained symptomless. To complete Koch's postulate, re-isolations were achieved. Re-isolated strains on TSA showed the same colony morphology as described above. All re-isolated strains were identified as Xcc based on partial gyrB sequencing and Xcc specific qPCR test (Rezki et al., 2016). This first report in France and the recent identification in Serbia (Popovic et al., 2013) may illustrate the emergence of the disease on this crop in Europe. The prevalence and consequences of this disease should be evaluated over a wider geographic area.

4.
Plant Dis ; 107(8): 2279-2287, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36611242

RESUMO

Bacterial leaf streak disease caused by Xanthomonas translucens pv. undulosa is an economically important disease threatening wheat and barley crops around the globe. Thus far, specific PCR-based detection and identification tests for X. translucens pathovars are not available. In this study, we used comparative genomics approach to design a pathovar-specific primer pair for detection of X. translucens pv. undulosa in naturally infected seeds and its differentiation from other pathovars of the species. For this aim, complete genome sequences of strains of different X. translucens pathovars were compared and the specific PCR primer pair XtuF/XtuR was designed. These primers were strictly specific to X. translucens pv. undulosa because the expected 229-bp DNA fragment was not amplified in the closely related pathovars or in other xanthomonads, wheat-pathogenic bacteria, and other plant-pathogenic bacteria. High sensitivity of the primer pair XtuF/XtuR allowed detection of pure DNA of the pathogen in a concentration as low as 4.5 pg/µl. The pathogen was also detected in water suspension at a concentration of 8.6 × 102 CFU/ml. The PCR test was capable of detecting the pathogen in extracts of naturally infected wheat seeds at a concentration of 3.5 × 104 CFU/g while a culture-plate method was able to detect the pathogen at a concentration of 50 × 105 CFU/g of the same seeds. The PCR test developed in this study is a step forward for precise detection and identification of X. translucens pv. undulosa to prevent outbreaks of the bacterial leaf streak disease.


Assuntos
Hordeum , Xanthomonas , Hordeum/microbiologia , Genômica , Xanthomonas/genética , Triticum/microbiologia , Reação em Cadeia da Polimerase
5.
Phytopathology ; 112(3): 691-699, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34289714

RESUMO

Accurate assessment of plant symptoms plays a key role for measuring the impact of pathogens during plant-pathogen interaction. Common bacterial blight caused by Xanthomonas phaseoli pv. phaseoli and X. citri pv. fuscans is a major threat to common bean. The pathogenicity of these bacteria is variable among strains and depends mainly on a type III secretion system and associated type III effectors such as transcription activator-like effectors. Because the impact of a single gene is often small and difficult to detect, a discriminating methodology is required to distinguish the slight phenotype changes induced during the progression of the disease. Here, we compared two different inoculation and symptom assessment methods for their ability to distinguish two tal mutants from their corresponding wild-type strains. Interestingly, rub inoculation of the first leaves combined with symptom assessment by machine learning-based imaging allowed significant distinction between wild-type and mutant strains. By contrast, dip inoculation of first-trifoliate leaves combined with chlorophyll fluorescence imaging did not differentiate the strains. Furthermore, the new method developed here led to the miniaturization of pathogenicity tests and significant time savings.


Assuntos
Fabaceae , Doenças das Plantas , Bactérias , Aprendizado de Máquina , Doenças das Plantas/microbiologia , Virulência
6.
Phytopathology ; 112(8): 1630-1639, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35196068

RESUMO

Xanthomonas arboricola comprises a number of economically important fruit tree pathogens classified within different pathovars. Dozens of nonpathogenic and taxonomically unvalidated strains are also designated as X. arboricola, leading to a complicated taxonomic status in the species. In this study, we have evaluated the whole-genome resources of all available Xanthomonas spp. strains designated as X. arboricola in the public databases to refine the members of the species based on DNA similarity indexes and core genome-based phylogeny. Our results show that, of the nine validly described pathovars within X. arboricola, pathotype strains of seven pathovars are taxonomically genuine, belonging to the core clade of the species regardless of their pathogenicity on the host of isolation (thus the validity of pathovar status). However, strains of X. arboricola pv. guizotiae and X. arboricola pv. populi do not belong to X. arboricola because of the low DNA similarities between the type strain of the species and the pathotype strains of these two pathovars. Thus, we propose to elevate the two pathovars to the rank of a species as X. guizotiae sp. nov. with the type strain CFBP 7408T and X. populina sp. nov. with the type strain CFBP 3123T. In addition, other mislabeled strains of X. arboricola were scattered within Xanthomonas spp. that belong to previously described species or represent novel species that await formal description.


Assuntos
Doenças das Plantas , Xanthomonas , Frutas , Filogenia
7.
BMC Genomics ; 21(1): 566, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811445

RESUMO

BACKGROUND: Common bacterial blight (CBB) caused by Xanthomonas phaseoli pv. phaseoli and Xanthomonas citri pv. fuscans is one of the major threats to common bean crops (Phaseolus vulgaris L.). Resistance to CBB is particularly complex as 26 quantitative resistance loci to CBB have been described so far. To date, transcriptomic studies after CBB infection have been very scarce and the molecular mechanisms underlying susceptibility or resistance are largely unknown. RESULTS: We sequenced and annotated the genomes of two common bean genotypes being either resistant (BAT93) or susceptible (JaloEEP558) to CBB. Reciprocal BLASTp analysis led to a list of 20,787 homologs between these genotypes and the common bean reference genome (G19833), which provides a solid dataset for further comparative analyses. RNA-Seq after inoculation with X. phaseoli pv. phaseoli showed that the susceptible genotype initiated a more intense and diverse biological response than the resistant genotype. Resistance was linked to upregulation of the salicylic acid pathway and downregulation of photosynthesis and sugar metabolism, while susceptibility was linked to downregulation of resistance genes and upregulation of the ethylene pathway and of genes involved in cell wall modification. CONCLUSIONS: This study helps better understanding the mechanisms occurring during the early colonization phase of common bean by Xanthomonas and unveils new actors potentially important for resistance and susceptibility to CBB. We discuss the potential link between the pathways induced during bean colonization and genes induced by transcription activator-like effectors (TALEs), as illustrated in other Xanthomonas pathovars.


Assuntos
Phaseolus , Xanthomonas , Regulação para Baixo , Phaseolus/genética , Fotossíntese/genética , Doenças das Plantas/genética , Ácido Salicílico , Regulação para Cima
9.
Appl Environ Microbiol ; 86(6)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31924620

RESUMO

Members of the genus Clavibacter are economically important bacterial plant pathogens infecting a set of diverse agricultural crops (e.g., alfalfa, corn, potato, tomato, and wheat). Tomato-associated Clavibacter sp. strains account for a great portion of the genetic diversity of the genus, and C. michiganensissensu stricto (formerly C. michiganensis subsp. michiganensis), causing bacterial canker disease, is considered one of the most destructive seed-borne agents for the crop worldwide. However, current taxonomic descriptions of the genus do not reflect the existing diversity of the strains, resulting in unsatisfactory results in quarantine surveys for the pathogens. In this study, we used all the available genome sequences of Clavibacter sp. strains, including the type strains of newly described subspecies, to provide precise insight into the diversity of tomato-associated members of the genus and further clarify the taxonomic status of the strains using genotypic and phenotypic features. The results of phylogenetic analyses revealed the existence of nine hypothetical new species among the investigated strains. None of the three new subspecies (i.e., C. michiganensis subsp. californiensis, C. michiganensis subsp. chilensis, and C. michiganensis subsp. phaseoli) is included within the tomato-pathogenic C. michiganensissensu stricto lineage. Although comparative genomics revealed the lack of chp and tomA pathogenicity determinant gene clusters in the nonpathogenic strains, a number of pathogenicity-related genes were noted to be present in all the strains regardless of their pathogenicity characteristics. Altogether, our results indicate a need for a formal taxonomic reconsideration of tomato-associated Clavibacter sp. strains to facilitate differentiation of the lineages in quarantine inspections.IMPORTANCEClavibacter spp. are economically important bacterial plant pathogens infecting a set of diverse agricultural crops, such as alfalfa, corn, pepper, potato, tomato, and wheat. A number of plant-pathogenic members of the genus (e.g., C. michiganensissensu stricto and C. sepedonicus, infecting tomato and potato plants, respectively) are included in the A2 (high-risk) list of quarantine pathogens by the European and Mediterranean Plant Protection Organization (EPPO). Although tomato-associated members of Clavibacter spp. account for a significant portion of the genetic diversity in the genus, only the strains belonging to C. michiganensissensu stricto (formerly C. michiganensis subsp. michiganensis) cause bacterial canker disease of tomato and are subjected to the quarantine inspections. Hence, discrimination between the pathogenic and nonpathogenic Clavibacter sp. strains associated with tomato seeds and transplants plays a pivotal role in the accurate detection and cost-efficient management of the disease. On the other hand, detailed information on the genetic contents of different lineages of the genus would lead to the development of genome-informed specific detection techniques. In this study, we have provided an overview of the phylogenetic and genomic differences between the pathogenic and nonpathogenic tomato-associated Clavibacter sp. strains. We also noted that the taxonomic status of newly introduced subspecies of C. michiganensis (i.e., C. michiganensis subsp. californiensis, C. michiganensis subsp. chilensis, and C. michiganensis subsp. phaseoli) should be reconsidered.


Assuntos
Actinobacteria/classificação , Variação Genética , Genoma Bacteriano , Interações Hospedeiro-Patógeno , Filogenia , Solanum lycopersicum/microbiologia , Actinobacteria/genética , Genômica
10.
Phytopathology ; 110(4): 744-757, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31909688

RESUMO

Zucchini (Cucurbita pepo) is worldwide affected by Pseudomonas syringae, inducing vein clearing, stunting, and necroses during plantlet development. A collection of 58 P. syringae strains isolated from diseased zucchini plantlets was characterized by multilocus sequence analysis (MLSA). A subset of 23 strains responsible for vein clearing of zucchini (VCZ) was evaluated for pathogenicity on zucchini, and their genomes were sequenced. The host range of six VCZ strains was evaluated on 11 cucurbit species. Most VCZ strains belong to clades 2a and 2b-a within phylogroup 2 of P. syringae species complex and are closely related to other strains previously isolated from cucurbits. Genome analyses revealed diversity among VCZ strains within each clade. One main cluster, once referred to by the invalid pathovar name (peponis), gathers VCZ strains presenting a narrow host range including zucchini and squashes. Other VCZ strains present a large host range including zucchini, squashes, cucumber, melons, and in some cases watermelon. The VCZ strain pathogenic features are strongly associated with type III effector repertoires. The presence of avrRpt2 and absence of hopZ5 are associated with a narrow host range, whereas the presence of hopZ5 and absence of avrRpt2 are most generally associated with a large host range. To better detect the different clusters identified with whole genome sequence and pathogenicity analyses, we used a specific-k-mers approach to refine the MLSA scheme. Using this novel MLSA scheme to type P. syringae isolates from diseased cucurbits would give insight into distribution of worldwide strains and origin of epidemics.


Assuntos
Doenças das Plantas , Pseudomonas syringae , Tipagem de Sequências Multilocus , Filogenia , Virulência
11.
Phytopathology ; 110(3): 556-566, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31799900

RESUMO

Clavibacter michiganensis is a Gram-positive bacterial pathogen that proliferates in the xylem vessels of tomato, causing bacterial wilt and canker symptoms. Accurate detection is a crucial step in confirming outbreaks of bacterial canker and developing management strategies. A major problem with existing detection methods are false-positive and -negative results. Here, we report the use of comparative genomics of 37 diverse Clavibacter strains, including 21 strains sequenced in this study, to identify specific sequences that are C. michiganensis detection targets. Genome-wide phylogenic analyses revealed additional diversity within the genus Clavibacter. Pathogenic C. michiganensis strains varied in plasmid composition, highlighting the need for detection methods based on chromosomal targets. We utilized sequences of C. michiganensis-specific loci to develop a multiplex PCR-based diagnostic platform using two C. michiganensis chromosomal genes (rhuM and tomA) and an internal control amplifying both bacterial and plant DNA (16s ribosomal RNA). The multiplex PCR assay specifically detected C. michiganensis strains from a panel of 110 additional bacteria, including other Clavibacter spp. and bacterial pathogens of tomato. The assay was adapted to detect the presence of C. michiganensis in seed and tomato plant materials with high sensitivity and specificity. In conclusion, the described method represents a robust, specific tool for detection of C. michiganensis in tomato seed and infected plants.


Assuntos
Micrococcaceae , Solanum lycopersicum , Actinobacteria , Clavibacter , Genômica , Reação em Cadeia da Polimerase Multiplex , Doenças das Plantas
12.
BMC Genomics ; 20(1): 239, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30909861

RESUMO

BACKGROUND: The phytopathogenic bacterium Xylella fastidiosa was thought to be restricted to the Americas where it infects and kills numerous hosts. Its detection worldwide has been blooming since 2013 in Europe and Asia. Genetically diverse, this species is divided into six subspecies but genetic traits governing this classification are poorly understood. RESULTS: SkIf (Specific k-mers Identification) was designed and exploited for comparative genomics on a dataset of 46 X. fastidiosa genomes, including seven newly sequenced individuals. It was helpful to quickly check the synonymy between strains from different collections. SkIf identified specific SNPs within 16S rRNA sequences that can be employed for predicting the distribution of Xylella through data mining. Applied to inter- and intra-subspecies analyses, it identified specific k-mers in genes affiliated to differential gene ontologies. Chemotaxis-related genes more prevalently possess specific k-mers in genomes from subspecies fastidiosa, morus and sandyi taken as a whole group. In the subspecies pauca increased abundance of specific k-mers was found in genes associated with the bacterial cell wall/envelope/plasma membrane. Most often, the k-mer specificity occurred in core genes with non-synonymous SNPs in their sequences in genomes of the other subspecies, suggesting putative impact in the protein functions. The presence of two integrative and conjugative elements (ICEs) was identified, one chromosomic and an entire plasmid in a single strain of X. fastidiosa subsp. pauca. Finally, a revised taxonomy of X. fastidiosa into three major clades defined by the subspecies pauca (clade I), multiplex (clade II) and the combination of fastidiosa, morus and sandyi (clade III) was strongly supported by k-mers specifically associated with these subspecies. CONCLUSIONS: SkIf is a robust and rapid software, freely available, that can be dedicated to the comparison of sequence datasets and is applicable to any field of research. Applied to X. fastidiosa, an emerging pathogen in Europe, it provided an important resource to mine for identifying genetic markers of subspecies to optimize the strategies attempted to limit the pathogen dissemination in novel areas.


Assuntos
RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Xylella/classificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Mineração de Dados , Ontologia Genética , Genômica/métodos , Filogenia , Polimorfismo de Nucleotídeo Único , Xylella/genética
13.
BMC Genomics ; 19(1): 606, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30103675

RESUMO

BACKGROUND: Host specialization is a hallmark of numerous plant pathogens including bacteria, fungi, oomycetes and viruses. Yet, the molecular and evolutionary bases of host specificity are poorly understood. In some cases, pathological convergence is observed for individuals belonging to distant phylogenetic clades. This is the case for Xanthomonas strains responsible for common bacterial blight of bean, spread across four genetic lineages. All the strains from these four lineages converged for pathogenicity on common bean, implying possible gene convergences and/or sharing of a common arsenal of genes conferring the ability to infect common bean. RESULTS: To search for genes involved in common bean specificity, we used a combination of whole-genome analyses without a priori, including a genome scan based on k-mer search. Analysis of 72 genomes from a collection of Xanthomonas pathovars unveiled 115 genes bearing DNA sequences specific to strains responsible for common bacterial blight, including 20 genes located on a plasmid. Of these 115 genes, 88 were involved in successive events of horizontal gene transfers among the four genetic lineages, and 44 contained nonsynonymous polymorphisms unique to the causal agents of common bacterial blight. CONCLUSIONS: Our study revealed that host specificity of common bacterial blight agents is associated with a combination of horizontal transfers of genes, and highlights the role of plasmids in these horizontal transfers.


Assuntos
Transferência Genética Horizontal , Interações Hospedeiro-Patógeno , Phaseolus/microbiologia , Doenças das Plantas/genética , Xanthomonas/patogenicidade , Proteínas de Bactérias/genética , Genoma Bacteriano , Phaseolus/genética , Phaseolus/crescimento & desenvolvimento , Filogenia , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Virulência , Sequenciamento Completo do Genoma , Xanthomonas/classificação
14.
Mol Plant Microbe Interact ; 30(10): 786-802, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28677494

RESUMO

Clavibacter michiganensis subsp. michiganensis is a gram-positive bacterial pathogen that proliferates in the xylem vessels of tomato, causing bacterial canker disease. In this study, we sequenced and assembled genomes of 11 C. michiganensis subsp. michiganensis strains isolated from infected tomato fields in California as well as five Clavibacter strains that colonize tomato endophytically but are not pathogenic in this host. The analysis of the C. michiganensis subsp. michiganensis genomes supported the monophyletic nature of this pathogen but revealed genetic diversity among strains, consistent with multiple introduction events. Two tomato endophytes that clustered phylogenetically with C. michiganensis strains capable of infecting wheat and pepper and were also able to cause disease in these plants. Plasmid profiles of the California strains were variable and supported the essential role of the pCM1-like plasmid and the CelA cellulase in virulence, whereas the absence of the pCM2-like plasmid in some pathogenic C. michiganensis subsp. michiganensis strains revealed it is not essential. A large number of secreted C. michiganensis subsp. michiganensis proteins were carbohydrate-active enzymes (CAZymes). Glycome profiling revealed that C. michiganensis subsp. michiganensis but not endophytic Clavibacter strains is able to extensively alter tomato cell-wall composition. Two secreted CAZymes found in all C. michiganensis subsp. michiganensis strains, CelA and PelA1, enhanced pathogenicity on tomato. Collectively, these results provide a deeper understanding of C. michiganensis subsp. michiganensis diversity and virulence strategies.


Assuntos
Actinomycetales/genética , Actinomycetales/patogenicidade , Variação Genética , Genômica , Actinomycetales/enzimologia , Actinomycetales/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carboidratos/química , Parede Celular/metabolismo , Celulase/metabolismo , Genoma Bacteriano , Glicômica , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Anotação de Sequência Molecular , Fenótipo , Filogenia , Plasmídeos/genética , Polissacarídeo-Liases/metabolismo , Análise de Sequência de DNA , Virulência/genética
16.
BMC Genomics ; 18(1): 670, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28854875

RESUMO

BACKGROUND: Common bacterial blight is a devastating bacterial disease of common bean (Phaseolus vulgaris) caused by Xanthomonas citri pv. fuscans and Xanthomonas phaseoli pv. phaseoli. These phylogenetically distant strains are able to cause similar symptoms on common bean, suggesting that they have acquired common genetic determinants of adaptation to common bean. Transcription Activator-Like (TAL) effectors are bacterial type III effectors that are able to induce the expression of host genes to promote infection or resistance. Their capacity to bind to a specific host DNA sequence suggests that they are potential candidates for host adaption. RESULTS: To study the diversity of tal genes from Xanthomonas strains responsible for common bacterial blight of bean, whole genome sequences of 17 strains representing the diversity of X. citri pv. fuscans and X. phaseoli pv. phaseoli were obtained by single molecule real time sequencing. Analysis of these genomes revealed the existence of four tal genes named tal23A, tal20F, tal18G and tal18H, respectively. While tal20F and tal18G were chromosomic, tal23A and tal18H were carried on plasmids and shared between phylogenetically distant strains, therefore suggesting recent horizontal transfers of these genes between X. citri pv. fuscans and X. phaseoli pv. phaseoli strains. Strikingly, tal23A was present in all strains studied, suggesting that it played an important role in adaptation to common bean. In silico predictions of TAL effectors targets in the common bean genome suggested that TAL effectors shared by X. citri pv. fuscans and X. phaseoli pv. phaseoli strains target the promoters of genes of similar functions. This could be a trace of convergent evolution among TAL effectors from different phylogenetic groups, and comforts the hypothesis that TAL effectors have been implied in the adaptation to common bean. CONCLUSIONS: Altogether, our results favour a model where plasmidic TAL effectors are able to contribute to host adaptation by being horizontally transferred between distant lineages.


Assuntos
Adaptação Fisiológica , Transferência Genética Horizontal , Phaseolus/microbiologia , Efetores Semelhantes a Ativadores de Transcrição/genética , Xanthomonas/genética , Xanthomonas/fisiologia , Elementos de DNA Transponíveis/genética , Evolução Molecular , Duplicação Gênica , Genômica , Interações Hospedeiro-Patógeno/genética , Filogenia , Xanthomonas/metabolismo
17.
Mol Ecol ; 26(21): 5939-5952, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28869687

RESUMO

Deciphering the evolutionary history and transmission patterns of virulence determinants is necessary to understand the emergence of novel pathogens. The main virulence determinant of most pathogenic proteobacteria is the type three secretion system (T3SS). The Xanthomonas genus includes bacteria responsible for numerous epidemics in agroecosystems worldwide and represents a major threat to plant health. The main virulence factor of Xanthomonas is the Hrp2 family T3SS; however, this system is not conserved in all strains and it has not been previously determined whether the distribution of T3SS in this bacterial genus has resulted from losses or independent acquisitions. Based on comparative genomics of 82 genome sequences representing the diversity of the genus, we have inferred three ancestral acquisitions of the Hrp2 cluster during Xanthomonas evolution followed by subsequent losses in some commensal strains and re-acquisition in some species. While mutation was the main force driving polymorphism at the gene level, interspecies homologous recombination of large fragments expanding through several genes shaped Hrp2 cluster polymorphism. Horizontal gene transfer of the entire Hrp2 cluster also occurred. A reduced core effectome composed of xopF1, xopM, avrBs2 and xopR was identified that may allow commensal strains overcoming plant basal immunity. In contrast, stepwise accumulation of numerous type 3 effector genes was shown in successful pathogens responsible for epidemics. Our data suggest that capacity to intimately interact with plants through T3SS would be an ancestral trait of xanthomonads. Since its acquisition, T3SS has experienced a highly dynamic evolutionary history characterized by intense gene flux between species that may reflect its role in host adaptation.


Assuntos
Evolução Molecular , Fluxo Gênico , Sistemas de Secreção Tipo III/genética , Xanthomonas/genética , Transferência Genética Horizontal , Genes Bacterianos , Recombinação Homóloga , Filogenia , Fatores de Virulência/genética
18.
Environ Microbiol ; 18(6): 1792-804, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26171841

RESUMO

Seeds have evolved in association with diverse microbial assemblages that may influence plant growth and health. However, little is known about the composition of seed-associated microbial assemblages and the ecological processes shaping their structures. In this work, we monitored the relative influence of the host genotypes and terroir on the structure of the seed microbiota through metabarcoding analysis of different microbial assemblages associated to five different bean cultivars harvested in two distinct farms. Overall, few bacterial and fungal operational taxonomic units (OTUs) were conserved across all seed samples. The lack of shared OTUs between samples is explained by a significant effect of the farm site on the structure of microbial assemblage, which explained 12.2% and 39.7% of variance in bacterial and fungal diversity across samples. This site-specific effect is reflected by the significant enrichment of 70 OTUs in Brittany and 88 OTUs in Luxembourg that lead to differences in co-occurrence patterns. In contrast, variance in microbial assemblage structure was not explained by host genotype. Altogether, these results suggest that seed-associated microbial assemblage is determined by niche-based processes and that the terroir is a key driver of these selective forces.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/isolamento & purificação , Microbiota , Sementes/microbiologia , Bactérias/genética , Ecossistema , Fungos/genética
19.
BMC Genomics ; 16: 975, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26581393

RESUMO

BACKGROUND: The bacterial species Xanthomonas campestris infects a wide range of Brassicaceae. Specific pathovars of this species cause black rot (pv. campestris), bacterial blight of stock (pv. incanae) or bacterial leaf spot (pv. raphani). RESULTS: In this study, we extended the genomic coverage of the species by sequencing and annotating the genomes of strains from pathovar incanae (CFBP 1606R and CFBP 2527R), pathovar raphani (CFBP 5828R) and a pathovar formerly named barbareae (CFBP 5825R). While comparative analyses identified a large core ORFeome at the species level, the core type III effectome was limited to only three putative type III effectors (XopP, XopF1 and XopAL1). In Xanthomonas, these effector proteins are injected inside the plant cells by the type III secretion system and contribute collectively to virulence. A deep and strand-specific RNA sequencing strategy was adopted in order to experimentally refine genome annotation for strain CFBP 5828R. This approach also allowed the experimental definition of novel ORFs and non-coding RNA transcripts. Using a constitutively active allele of hrpG, a master regulator of the type III secretion system, a HrpG-dependent regulon of 141 genes co-regulated with the type III secretion system was identified. Importantly, all these genes but seven are positively regulated by HrpG and 56 of those encode components of the Hrp type III secretion system and putative effector proteins. CONCLUSIONS: This dataset is an important resource to mine for novel type III effector proteins as well as for bacterial genes which could contribute to pathogenicity of X. campestris.


Assuntos
Perfilação da Expressão Gênica , Genômica , Xanthomonas campestris/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Anotação de Sequência Molecular , Fases de Leitura Aberta , Regulon/genética , Xanthomonas campestris/imunologia
20.
Appl Environ Microbiol ; 81(14): 4651-68, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25934623

RESUMO

Deep and comprehensive knowledge of the genetic structure of pathogenic species is the cornerstone on which the design of precise molecular diagnostic tools is built. Xanthomonas arboricola is divided into pathovars, some of which are classified as quarantine organisms in many countries and are responsible for diseases on nut and stone fruit trees that have emerged worldwide. Recent taxonomic studies of the genus Xanthomonas showed that strains isolated from other hosts should be classified in X. arboricola, extending the host range of the species. To investigate the genetic structure of X. arboricola and the genetic relationships between highly pathogenic strains and strains apparently not relevant to plant health, we conducted multilocus sequence analyses on a collection of strains representative of the known diversity of the species. Most of the pathovars were clustered in separate monophyletic groups. The pathovars pruni, corylina, and juglandis, responsible for pandemics in specific hosts, were highly phylogenetically related and clustered in three distinct clonal complexes. In contrast, strains with no or uncertain pathogenicity were represented by numerous unrelated singletons scattered in the phylogenic tree. Depending on the pathovar, intra- and interspecies recombination played contrasting roles in generating nucleotide polymorphism. This work provides a population genetics framework for molecular epidemiological surveys of emerging plant pathogens within X. arboricola. Based on our results, we propose to reclassify three former pathovars of Xanthomonas campestris as X. arboricola pv. arracaciae comb. nov., X. arboricola pv. guizotiae comb. nov., and X. arboricola pv. zantedeschiae comb. nov. An emended description of X. arboricola Vauterin et al. 1995 is provided.


Assuntos
Doenças das Plantas/microbiologia , Plantas/microbiologia , Xanthomonas/isolamento & purificação , Especificidade de Hospedeiro , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Plantas/classificação , Xanthomonas/classificação , Xanthomonas/genética , Xanthomonas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA