Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
J Neurosci ; 44(16)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38383497

RESUMO

Recent work suggests that indentations of the cerebral cortex, or sulci, may be uniquely vulnerable to atrophy in aging and Alzheimer's disease (AD) and that the posteromedial cortex (PMC) is particularly vulnerable to atrophy and pathology accumulation. However, these studies did not consider small, shallow, and variable tertiary sulci that are located in association cortices and are often associated with human-specific aspects of cognition. Here, we manually defined 4,362 PMC sulci in 432 hemispheres in 216 human participants (50.5% female) and found that these smaller putative tertiary sulci showed more age- and AD-related thinning than larger, more consistent sulci, with the strongest effects for two newly uncovered sulci. A model-based approach relating sulcal morphology to cognition identified that a subset of these sulci was most associated with memory and executive function scores in older adults. These findings lend support to the retrogenesis hypothesis linking brain development and aging and provide new neuroanatomical targets for future studies of aging and AD.


Assuntos
Doença de Alzheimer , Humanos , Feminino , Idoso , Masculino , Doença de Alzheimer/patologia , Córtex Cerebral/patologia , Envelhecimento/patologia , Cognição , Atrofia/patologia , Imageamento por Ressonância Magnética
2.
Ann Neurol ; 95(2): 249-259, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37789559

RESUMO

OBJECTIVE: Tau pathology is recognized as a primary contributor to neurodegeneration and clinical symptoms in Alzheimer's disease (AD). This study aims to localize the early tau pathology in cognitively normal older people that is predictive of subsequent neurodegeneration and memory decline, and delineate factors underlying tau-related memory decline in individuals with and without ß-amyloid (Aß). METHODS: A total of 138 cognitively normal older individuals from the Berkeley Aging Cohort Study underwent 11 C-Pittsburgh Compound-B (PiB) positron emission tomography (PET) to determine Aß positivity and 18 F-Flortaucipir (FTP) PET to measure tau deposition, with prospective cognitive assessments and structural magnetic resonance imaging. Voxel-wise FTP analyses examined associations between baseline tau deposition and longitudinal memory decline, longitudinal hippocampal atrophy, and longitudinal cortical thinning in AD signature regions. We also examined whether hippocampal atrophy and cortical thinning mediate tau effects on future memory decline. RESULTS: We found Aß-dependent tau associations with memory decline in the entorhinal and temporoparietal regions, Aß-independent tau associations with hippocampal atrophy within the medial temporal lobe (MTL), and that widespread tau was associated with mean cortical thinning in AD signature regions. Tau-related memory decline was mediated by hippocampal atrophy in Aß- individuals and by mean cortical thinning in Aß+ individuals. INTERPRETATION: Our results suggest that tau may affect memory through different mechanisms in normal aging and AD. Early tau deposition independent of Aß predicts subsequent hippocampal atrophy that may lead to memory deficits in normal older individuals, whereas elevated cortical tau deposition is associated with cortical thinning that may lead to more severe memory decline in AD. ANN NEUROL 2024;95:249-259.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Estudos de Coortes , Proteínas tau/metabolismo , Afinamento Cortical Cerebral , Estudos Prospectivos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Tomografia por Emissão de Pósitrons , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Atrofia , Disfunção Cognitiva/metabolismo , Imageamento por Ressonância Magnética
3.
Ann Neurol ; 96(2): 378-389, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38747315

RESUMO

OBJECTIVE: Cross-sectional definitions of successful cognitive aging have been widely utilized, but longitudinal measurements can identify people who do not decline. We performed this study to contrast maintenance with declining trajectories, including clinical conversion. METHODS: We included baseline cognitively unimpaired Alzheimer's Disease Neuroimaging Initiative participants with 3 or more cognitive testing sessions (n = 539, follow-up 6.1 ± 3.5 years) and calculated slopes of an episodic memory composite (MEM) to classify them into two groups: maintainers (slope ≥ 0) and decliners (slope < 0). Within decliners, we examined a subgroup of individuals who became clinically impaired during follow-up. These groups were compared on baseline characteristics and cognitive performance, as well as both cross-sectional and longitudinal Alzheimer disease (AD) biomarker measures (beta-amyloid [Aß], tau, and hippocampal volume). RESULTS: Forty-one percent (n = 221) of the cohort were MEM maintainers, and 33% (n = 105) of decliners converted to clinical impairment during follow-up. Compared to those with superior baseline scores, maintainers had lower education and were more likely to be male. Maintainers and decliners did not differ on baseline MEM scores, but maintainers did have higher non-MEM cognitive scores. Maintainers had lower baseline global Aß, lower tau pathology, and larger hippocampal volumes than decliners, even after removing converters. There were no differences in rates of change of any AD biomarkers between any cognitive trajectory groups except for a higher rate of hippocampal atrophy in clinical converters compared to maintainers. INTERPRETATION: Using longitudinal data to define cognitive trajectory groups reduces education and sex bias and reveals the prognostic importance of early onset of accumulation of AD pathology. ANN NEUROL 2024;96:378-389.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Envelhecimento Cognitivo , Humanos , Doença de Alzheimer/diagnóstico por imagem , Masculino , Feminino , Idoso , Estudos Longitudinais , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Envelhecimento Cognitivo/fisiologia , Idoso de 80 Anos ou mais , Proteínas tau/líquido cefalorraquidiano , Progressão da Doença , Estudos Transversais , Memória Episódica , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Cognição/fisiologia , Testes Neuropsicológicos
4.
Mol Psychiatry ; 28(10): 4390-4398, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37460847

RESUMO

The dorsal raphe nucleus (DRN) is one of the earliest targets of Alzheimer's disease-related tau pathology and is a major source of brain serotonin. We used [18F]Fluoro-m-tyrosine ([18F]FMT) PET imaging to measure serotonin synthesis capacity in the DRN in 111 healthy adults (18-85 years-old). Similar to reports in catecholamine systems, we found elevated serotonin synthesis capacity in older adults relative to young. To establish the structural and functional context within which serotonin synthesis capacity is elevated in aging, we examined relationships among DRN [18F]FMT net tracer influx (Ki) and longitudinal changes in cortical thickness using magnetic resonance imaging, longitudinal changes in self-reported depression symptoms, and AD-related tau and ß-amyloid (Aß) pathology using cross-sectional [18F]Flortaucipir and [11C]Pittsburgh compound-B PET respectively. Together, our findings point to elevated DRN [18F]FMT Ki as a marker of poorer aging trajectories. Older adults with highest serotonin synthesis capacity showed greatest temporal lobe cortical atrophy. Cortical atrophy was associated with increasing depression symptoms over time, and these effects appeared to be strongest in individuals with highest serotonin synthesis capacity. We did not find direct relationships between serotonin synthesis capacity and AD-related pathology. Exploratory analyses revealed nuanced effects of sex within the older adult group. Older adult females showed the highest DRN synthesis capacity and exhibited the strongest relationships between entorhinal cortex tau pathology and increasing depression symptoms. Together these findings reveal PET measurement of the serotonin system to be a promising marker of aging trajectories relevant to both AD and affective changes in older age.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Feminino , Humanos , Idoso , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Serotonina , Proteínas tau , Estudos Transversais , Doença de Alzheimer/psicologia , Envelhecimento , Peptídeos beta-Amiloides , Atrofia , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância Magnética
5.
Cereb Cortex ; 33(13): 8485-8495, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37160338

RESUMO

In rodents and nonhuman primates, sex hormones are powerful modulators of dopamine (DA) neurotransmission. Yet less is known about hormonal regulation of the DA system in the human brain. Using positron emission tomography (PET), we address this gap by comparing hormonal contraceptive users and nonusers across multiple aspects of DA function: DA synthesis capacity via the PET radioligand 6-[18F]fluoro-m-tyrosine ([18F]FMT), baseline D2/3 receptor binding potential using [11C]raclopride, and DA release using methylphenidate-paired [11C]raclopride. Participants consisted of 36 healthy women (n = 15 hormonal contraceptive users; n = 21 naturally cycling/non users of hormonal contraception), and men (n = 20) as a comparison group. A behavioral index of cognitive flexibility was assessed prior to PET imaging. Hormonal contraceptive users exhibited greater DA synthesis capacity than NC participants, particularly in dorsal caudate, and greater cognitive flexibility. Furthermore, across individuals, the magnitude of striatal DA synthesis capacity was associated with cognitive flexibility. No group differences were observed in D2/3 receptor binding or DA release. Analyses by sex alone may obscure underlying differences in DA synthesis tied to women's hormone status. Hormonal contraception (in the form of pill, shot, implant, ring, or intrauterine device) is used by ~400 million women worldwide, yet few studies have examined whether chronic hormonal manipulations impact basic properties of the DA system. Findings from this study begin to address this critical gap in women's health.


Assuntos
Anticoncepcionais , Dopamina , Masculino , Animais , Humanos , Feminino , Racloprida , Dopamina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores de Dopamina D2/metabolismo , Cognição
6.
Alzheimers Dement ; 20(1): 341-355, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37614157

RESUMO

INTRODUCTION: There is no consensus on either the definition of successful cognitive aging (SA) or the underlying neural mechanisms. METHODS: We examined the agreement between new and existing definitions using: (1) a novel measure, the cognitive age gap (SA-CAG, cognitive-predicted age minus chronological age), (2) composite scores for episodic memory (SA-EM), (3) non-memory cognition (SA-NM), and (4) the California Verbal Learning Test (SA-CVLT). RESULTS: Fair to moderate strength of agreement was found between the four definitions. Most SA groups showed greater cortical thickness compared to typical aging (TA), especially in the anterior cingulate and midcingulate cortices and medial temporal lobes. Greater hippocampal volume was found in all SA groups except SA-NM. Lower entorhinal 18 F-Flortaucipir (FTP) uptake was found in all SA groups. DISCUSSION: These findings suggest that a feature of SA, regardless of its exact definition, is resistance to tau pathology and preserved cortical integrity, especially in the anterior cingulate and midcingulate cortices. HIGHLIGHTS: Different approaches have been used to define successful cognitive aging (SA). Regardless of definition, different SA groups have similar brain features. SA individuals have greater anterior cingulate thickness and hippocampal volume. Lower entorhinal tau deposition, but not amyloid beta is related to SA. A combination of cortical integrity and resistance to tau may be features of SA.


Assuntos
Doença de Alzheimer , Envelhecimento Cognitivo , Disfunção Cognitiva , Humanos , Giro do Cíngulo/metabolismo , Proteínas tau/metabolismo , Imageamento por Ressonância Magnética , Envelhecimento/patologia , Peptídeos beta-Amiloides/metabolismo , Tomografia por Emissão de Pósitrons , Disfunção Cognitiva/patologia , Doença de Alzheimer/patologia
7.
Alzheimers Dement ; 20(10): 7340-7349, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39108002

RESUMO

The Alzheimer's Disease Neuroimaging Initiative (ADNI) PET Core has evolved over time, beginning with positron emission tomography (PET) imaging of a subsample of participants with [18F]fluorodeoxyglucose (FDG)-PET, adding tracers for measurement of ß-amyloid, followed by tau tracers. This review examines the evolution of the ADNI PET Core, the novel aspects of PET imaging in each stage of ADNI, and gives an accounting of PET images available in the ADNI database. The ADNI PET Core has been and continues to be a rich resource that provides quantitative PET data and preprocessed PET images to the scientific community, allowing interrogation of both basic and clinically relevant questions. By standardizing methods across different PET scanners and multiple PET tracers, the Core has demonstrated the feasibility of large-scale, multi-center PET studies. Data managed and disseminated by the PET Core has been critical to defining pathophysiological models of Alzheimer's disease (AD) and helped to drive methods used in modern therapeutic trials. HIGHLIGHTS: The ADNI PET Core began with FDG-PET and now includes three amyloid and three tau PET ligands. The PET Core has standardized acquisition and analysis of multitracer PET images. The ADNI PET Core helped to develop methods that have facilitated clinical trials in AD.


Assuntos
Doença de Alzheimer , Tomografia por Emissão de Pósitrons , Humanos , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neuroimagem/métodos , Fluordesoxiglucose F18
8.
Alzheimers Dement ; 20(4): 2526-2537, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38334195

RESUMO

INTRODUCTION: Amyloid beta (Aß) and tau pathology are cross-sectionally associated with atrophy and cognitive decline in aging and Alzheimer's disease (AD). METHODS: We investigated relationships between concurrent longitudinal measures of Aß (Pittsburgh compound B [PiB] positron emission tomography [PET]), tau (flortaucipir [FTP] PET), atrophy (structural magnetic resonance imaging), episodic memory (EM), and non-memory (NM) in 78 cognitively healthy older adults (OA). RESULTS: Entorhinal FTP change was correlated with EM decline regardless of Aß, but meta-temporal FTP and global PiB change were only associated with EM and NM decline in Aß+ OA. Voxel-wise analyses revealed significant associations between temporal lobe FTP change and EM decline in all groups. PiB and FTP change were not associated with structural change, suggesting a functional or microstructural mechanism linking these measures to cognitive decline. DISCUSSION: Our results show that longitudinal Aß is linked to cognitive decline only in the presence of elevated Aß, but longitudinal temporal lobe tau is associated with memory decline regardless of Aß status. HIGHLIGHTS: Entorhinal tau change was associated with memory decline in older adults (OA), regardless of amyloid beta (Aß). Greater meta-region of interest (ROI) tau change correlated with memory decline in Aß+ OA. Voxel-wise temporal tau change correlated with memory decline, regardless of Aß. Meta-ROI tau and global amyloid change correlated with non-memory change in Aß+ OA. Tau and amyloid accumulation were not associated with structural change in OA.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Humanos , Envelhecimento/patologia , Amiloide , Peptídeos beta-Amiloides , Atrofia , Disfunção Cognitiva/diagnóstico por imagem , Imageamento por Ressonância Magnética , Transtornos da Memória , Tomografia por Emissão de Pósitrons , Proteínas tau
9.
Alzheimers Dement ; 20(3): 2113-2127, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38241084

RESUMO

INTRODUCTION: Abnormal amyloid-beta (Aß) and tau deposition define Alzheimer's Disease (AD), but non-elevated tau is relatively frequent in patients on the AD pathway. METHODS: We examined characteristics and regional patterns of 397 Aß+ unimpaired and impaired individuals with low tau (A+T-) in relation to their higher tau counterparts (A+T+). RESULTS: Seventy-one percent of Aß+ unimpaired and 42% of impaired Aß+ individuals were categorized as A+T- based on global tau. In impaired individuals only, A+T- status was associated with older age, male sex, and greater cardiovascular risk. α-synuclein was linked to poorer cognition, particularly when tau was low. Tau burden was most frequently elevated in a common set of temporal regions regardless of T+/T- status. DISCUSSION: Low tau is relatively common in patients on the AD pathway and is linked to comorbidities that contribute to impairment. These findings have implications for the selection of individuals for Aß- and tau-modifying therapies.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Masculino , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cognição , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo , Feminino
10.
Alzheimers Dement ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39392215

RESUMO

INTRODUCTION: Recent technological advances have increased the risk that de-identified brain images could be re-identified from face imagery. The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a leading source of publicly available de-identified brain imaging, who quickly acted to protect participants' privacy. METHODS: An independent expert committee evaluated 11 face-deidentification ("de-facing") methods and selected four for formal testing. RESULTS: Effects of de-facing on brain measurements were comparable across methods and sufficiently small to recommend de-facing in ADNI. The committee ultimately recommended mri_reface for advantages in reliability, and for some practical considerations. ADNI leadership approved the committee's recommendation, beginning in ADNI4. DISCUSSION: ADNI4 de-faces all applicable brain images before subsequent pre-processing, analyses, and public release. Trained analysts inspect de-faced images to confirm complete face removal and complete non-modification of brain. This paper details the history of the algorithm selection process and extensive validation, then describes the production workflows for de-facing in ADNI. HIGHLIGHTS: ADNI is implementing "de-facing" of MRI and PET beginning in ADNI4. "De-facing" alters face imagery in brain images to help protect privacy. Four algorithms were extensively compared for ADNI and mri_reface was chosen. Validation confirms mri_reface is robust and effective for ADNI sequences. Validation confirms mri_reface negligibly affects ADNI brain measurements.

11.
Alzheimers Dement ; 20(9): 5833-5848, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39041435

RESUMO

INTRODUCTION: Tau-positron emission tomography (PET) outcome data of patients with Alzheimer's disease (AD) cannot currently be meaningfully compared or combined when different tracers are used due to differences in tracer properties, instrumentation, and methods of analysis. METHODS: Using head-to-head data from five cohorts with tau PET radiotracers designed to target tau deposition in AD, we tested a joint propagation model (JPM) to harmonize quantification (units termed "CenTauR" [CTR]). JPM is a statistical model that simultaneously models the relationships between head-to-head and anchor point data. JPM was compared to a linear regression approach analogous to the one used in the amyloid PET Centiloid scale. RESULTS: A strong linear relationship was observed between CTR values across brain regions. Using the JPM approach, CTR estimates were similar to, but more accurate than, those derived using the linear regression approach. DISCUSSION: Preliminary findings using the JPM support the development and adoption of a universal scale for tau-PET quantification. HIGHLIGHTS: Tested a novel joint propagation model (JPM) to harmonize quantification of tau PET. Units of common scale are termed "CenTauRs". Tested a Centiloid-like linear regression approach. Using five cohorts with head-to-head tau PET, JPM outperformed linearregressionbased approach. Strong linear relationship was observed between CenTauRs values across brain regions.


Assuntos
Doença de Alzheimer , Encéfalo , Tomografia por Emissão de Pósitrons , Proteínas tau , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Humanos , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Masculino , Feminino , Idoso , Estudos de Coortes , Compostos Radiofarmacêuticos , Modelos Estatísticos
12.
J Neurosci ; 42(7): 1352-1361, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34965972

RESUMO

Mechanisms underlying the initial accumulation of tau pathology across the human brain are largely unknown. We examined whether baseline factors including age, amyloid-ß (Aß), and neural activity predicted longitudinal tau accumulation in temporal lobe regions that reflect distinct stages of tau pathogenesis. Seventy cognitively normal human older adults (77 ± 6 years, 59% female) received two or more 18F-flortaucipir (FTP) and 11C-Pittsburgh Compound B (PiB) PET scans (mean follow-up, 2.5 ± 1.1 years) to quantify tau and (Aß). Linear mixed-effects models were used to calculate the slopes of FTP change in entorhinal cortex (EC), parahippocampal cortex (PHC), and inferior temporal gyrus (IT), and slopes of global PiB change. Thirty-seven participants underwent functional MRI to measure baseline activation. Older age predicted EC tau accumulation, and baseline EC tau levels predicted subsequent tau accumulation in EC and PHC. In IT, however, baseline EC tau interacted with Aß to predict IT tau accumulation. Higher baseline local activation predicted tau accumulation within EC and PHC, and higher baseline hippocampal activation predicted EC tau accumulation. Our findings indicate that factors predicting tau accumulation vary as tau progresses through the temporal lobe. Older age is associated with initial tau accumulation in EC, while baseline EC tau and neural activity drive tau accumulation within medial temporal lobe. Aß subsequently facilitates tau spread from medial to lateral temporal lobe. Our findings elucidate potential drivers of tau accumulation and spread in aging, which are critical for understanding Alzheimer's disease pathogenesis.SIGNIFICANCE STATEMENT To further understand the mechanisms leading to tau pathogenesis and spread, we tested whether baseline factors such as age, amyloid-ß pathology, and activation predicted longitudinal tau accumulation in cognitively normal older adults. We found that distinct mechanisms contribute to tau accumulation as tau progresses across the temporal lobe, with initial tau accumulation in entorhinal cortex driven by age and subsequent spread driven by neural activity and amyloid-ß. We demonstrate that higher baseline activation predicts increased longitudinal tau accumulation, providing novel evidence that activation-dependent tau production may occur in the human brain. Our findings support major hypotheses generated from preclinical research, and have important translational implications, suggesting that the reduction of hyperactivation may help prevent the development of tau pathology.


Assuntos
Envelhecimento/patologia , Encéfalo/patologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Feminino , Humanos , Masculino , Tomografia por Emissão de Pósitrons , Fatores de Risco
13.
Neuroimage ; 265: 119761, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455762

RESUMO

Accurate measurement of Alzheimer's disease (AD) pathology in older adults without significant clinical impairment is critical to assessing intervention strategies aimed at slowing AD-related cognitive decline. The U.S. Study to Protect Brain Health Through Lifestyle Intervention to Reduce Risk (POINTER) is a 2-year randomized controlled trial to evaluate the effect of multicomponent risk reduction strategies in older adults (60-79 years) who are cognitively unimpaired but at increased risk for cognitive decline/dementia due to factors such as cardiovascular disease and family history. The POINTER Imaging ancillary study is collecting tau-PET ([18F]MK6240), beta-amyloid (Aß)-PET ([18F]florbetaben [FBB]) and MRI data to evaluate neuroimaging biomarkers of AD and cerebrovascular pathophysiology in this at-risk sample. Here 481 participants (70.0±5.0; 66% F) with baseline MK6240, FBB and structural MRI scans were included. PET scans were coregistered to the structural MRI which was used to create FreeSurfer-defined reference regions and target regions of interest (ROIs). We also created off-target signal (OTS) ROIs to examine the magnitude and distribution of MK6240 OTS across the brain as well as relationships between OTS and age, sex, and race. OTS was unimodally distributed, highly correlated across OTS ROIs and related to younger age and sex but not race. Aiming to identify an optimal processing approach for MK6240 that would reduce the influence of OTS, we compared our previously validated MRI-guided standard PET processing and 6 alternative approaches. The alternate approaches included combinations of reference region erosion and meningeal OTS masking before spatial smoothing as well as partial volume correction. To compare processing approaches we examined relationships between target ROIs (entorhinal cortex (ERC), hippocampus or a temporal meta-ROI (MetaROI)) SUVR and age, sex, race, Aß and a general cognitive status measure, the Modified Telephone Interview for Cognitive Status (TICSm). Overall, the processing approaches performed similarly, and none showed a meaningful improvement over standard processing. Across processing approaches we observed previously reported relationships with MK6240 target ROIs including positive associations with age, an Aß+> Aß- effect and negative associations with cognition. In sum, we demonstrated that different methods for minimizing effects of OTS, which is highly correlated across the brain within subject, produced no substantive change in our performance metrics. This is likely because OTS contaminates both reference and target regions and this contamination largely cancels out in SUVR data. Caution should be used when efforts to reduce OTS focus on target or reference regions in isolation as this may exacerbate OTS contamination in SUVR data.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/metabolismo , Pessoa de Meia-Idade
14.
BMC Med ; 21(1): 156, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138290

RESUMO

BACKGROUND: Alzheimer's disease (AD) pathology impairs cognitive function. Yet some individuals with high amounts of AD pathology suffer marked memory impairment, while others with the same degree of pathology burden show little impairment. Why is this? One proposed explanation is cognitive reserve i.e., factors that confer resilience against, or compensation for the effects of AD pathology. Deep NREM slow wave sleep (SWS) is recognized to enhance functions of learning and memory in healthy older adults. However, that the quality of NREM SWS (NREM slow wave activity, SWA) represents a novel cognitive reserve factor in older adults with AD pathology, thereby providing compensation against memory dysfunction otherwise caused by high AD pathology burden, remains unknown. METHODS: Here, we tested this hypothesis in cognitively normal older adults (N = 62) by combining 11C-PiB (Pittsburgh compound B) positron emission tomography (PET) scanning for the quantification of ß-amyloid (Aß) with sleep electroencephalography (EEG) recordings to quantify NREM SWA and a hippocampal-dependent face-name learning task. RESULTS: We demonstrated that NREM SWA significantly moderates the effect of Aß status on memory function. Specifically, NREM SWA selectively supported superior memory function in individuals suffering high Aß burden, i.e., those most in need of cognitive reserve (B = 2.694, p = 0.019). In contrast, those without significant Aß pathological burden, and thus without the same  need for cognitive reserve, did not similarly benefit from the presence of NREM SWA (B = -0.115, p = 0.876). This interaction between NREM SWA and Aß status predicting memory function was significant after correcting for age, sex, Body Mass Index, gray matter atrophy, and previously identified cognitive reserve factors, such as education and physical activity (p = 0.042). CONCLUSIONS: These findings indicate that NREM SWA is a novel cognitive reserve factor providing resilience against the memory impairment otherwise caused by high AD pathology burden. Furthermore, this cognitive reserve function of NREM SWA remained significant when accounting both for covariates, and factors previously linked to resilience, suggesting that sleep might be an independent cognitive reserve resource. Beyond such mechanistic insights are potential therapeutic implications. Unlike many other cognitive reserve factors (e.g., years of education, prior job complexity), sleep is a modifiable factor. As such, it represents an intervention possibility that may aid the preservation of cognitive function in the face of AD pathology, both present moment and longitudinally.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Reserva Cognitiva , Sono de Ondas Lentas , Humanos , Idoso , Doença de Alzheimer/patologia , Imageamento por Ressonância Magnética , Peptídeos beta-Amiloides , Sono , Tomografia por Emissão de Pósitrons
15.
Brain ; 145(2): 713-728, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34373896

RESUMO

Posterior cortical hypometabolism measured with 18F-fluorodeoxyglucose (FDG)-PET is a well-known marker of Alzheimer's disease-related neurodegeneration, but its associations with underlying neuropathological processes are unclear. We assessed cross-sectionally the relative contributions of three potential mechanisms causing hypometabolism in the retrosplenial and inferior parietal cortices: local molecular (amyloid and tau) pathology and atrophy, distant factors including contributions from the degenerating medial temporal lobe or molecular pathology in functionally connected regions, and the presence of the apolipoprotein E (APOE) ε4 allele. Two hundred and thirty-two amyloid-positive cognitively impaired patients from two cohorts [University of California, San Francisco (UCSF), and Alzheimer's Disease Neuroimaging Initiative (ADNI)] underwent MRI and PET with FDG, amyloid-PET using 11C-Pittsburgh Compound-B, 18F-florbetapir or 18F-florbetaben, and 18F-flortaucipir tau-PET in 1 year. Standard uptake value ratios (SUVRs) were calculated using tracer-specific reference regions. Regression analyses were run within cohorts to identify variables associated with retrosplenial or inferior parietal FDG standard uptake value ratios. On average, ADNI patients were older and were less impaired than the UCSF patients. Regional patterns of hypometabolism were similar between cohorts, although there were cohort differences in regional grey matter atrophy. Local cortical thickness and tau-PET (but not amyloid-PET) were independently associated with both retrosplenial and inferior parietal FDG SUVRs (ΔR2 = 0.09 to 0.21) across cohorts in models that also included age and disease severity (local model). Including medial temporal lobe volume improved the retrosplenial FDG model in the ADNI cohort (ΔR2 = 0.04, P = 0.008) but not for the UCSF (ΔR2 < 0.01, P = 0.52), and did not improve the inferior parietal models (ΔR2 < 0.01, P > 0.37). Interaction analyses revealed that medial temporal volume was more strongly associated with retrosplenial FDG SUVRs at earlier disease stages (P = 0.06 in UCSF, P = 0.046 in ADNI). Exploratory analyses across the cortex confirmed overall associations between hypometabolism and local tau pathology and thickness and revealed associations between medial temporal degeneration and hypometabolism in retrosplenial, orbitofrontal and anterior cingulate cortices. Finally, our data did not support hypotheses of a detrimental effect of pathology in connected regions or of an effect of the APOE ε4 allele in impaired participants. Overall, in two independent groups of patients at symptomatic stages of Alzheimer's disease, cortical hypometabolism mainly reflected structural neurodegeneration and tau, but not amyloid, pathology.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Amiloide/metabolismo , Apolipoproteína E4/genética , Atrofia , Encéfalo/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/metabolismo
16.
Brain ; 145(10): 3594-3607, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35580594

RESUMO

The extent to which the pathophysiology of autosomal dominant Alzheimer's disease corresponds to the pathophysiology of 'sporadic' late onset Alzheimer's disease is unknown, thus limiting the extrapolation of study findings and clinical trial results in autosomal dominant Alzheimer's disease to late onset Alzheimer's disease. We compared brain MRI and amyloid PET data, as well as CSF concentrations of amyloid-ß42, amyloid-ß40, tau and tau phosphorylated at position 181, in 292 carriers of pathogenic variants for Alzheimer's disease from the Dominantly Inherited Alzheimer Network, with corresponding data from 559 participants from the Alzheimer's Disease Neuroimaging Initiative. Imaging data and CSF samples were reprocessed as appropriate to guarantee uniform pipelines and assays. Data analyses yielded rates of change before and after symptomatic onset of Alzheimer's disease, allowing the alignment of the ∼30-year age difference between the cohorts on a clinically meaningful anchor point, namely the participant age at symptomatic onset. Biomarker profiles were similar for both autosomal dominant Alzheimer's disease and late onset Alzheimer's disease. Both groups demonstrated accelerated rates of decline in cognitive performance and in regional brain volume loss after symptomatic onset. Although amyloid burden accumulation as determined by PET was greater after symptomatic onset in autosomal dominant Alzheimer's disease than in late onset Alzheimer's disease participants, CSF assays of amyloid-ß42, amyloid-ß40, tau and p-tau181 were largely overlapping in both groups. Rates of change in cognitive performance and hippocampal volume loss after symptomatic onset were more aggressive for autosomal dominant Alzheimer's disease participants. These findings suggest a similar pathophysiology of autosomal dominant Alzheimer's disease and late onset Alzheimer's disease, supporting a shared pathobiological construct.


Assuntos
Doença de Alzheimer , Amiloidose , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Imageamento por Ressonância Magnética/métodos , Biomarcadores
17.
Cereb Cortex ; 32(13): 2762-2772, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34718454

RESUMO

Aging is associated with declines in multiple components of the dopamine system including loss of dopamine-producing neurons, atrophy of the dopamine system's cortical targets, and reductions in the density of dopamine receptors. Countering these patterns, dopamine synthesis appears to be stable or elevated in older age. We tested the hypothesis that elevation in dopamine synthesis in aging reflects a compensatory response to neuronal loss rather than a nonspecific monotonic shift in older age. We measured individual differences in striatal dopamine synthesis capacity in cognitively normal older adults using [18F]Fluoro-l-m-tyrosine positron emission tomography cross-sectionally and tested relationships with longitudinal reductions in cortical thickness and working memory decline beginning up to 13 years earlier. Consistent with a compensation account, older adults with the highest dopamine synthesis capacity were those with greatest atrophy in posterior parietal cortex. Elevated dopamine synthesis capacity was not associated with successful maintenance of working memory performance overall, but had a moderating effect such that higher levels of dopamine synthesis capacity reduced the impact of atrophy on cognitive decline. Together, these findings support a model by which upregulation of dopamine synthesis represents a mechanism of cognitive resilience in aging.


Assuntos
Dopamina , Imageamento por Ressonância Magnética , Idoso , Envelhecimento/fisiologia , Atrofia , Cognição/fisiologia , Dopamina/fisiologia , Humanos , Tomografia por Emissão de Pósitrons/métodos
18.
Alzheimers Dement ; 19(2): 444-455, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35429219

RESUMO

INTRODUCTION: Relying on magnetic resonance imaging (MRI) for quantification of positron emission tomography (PET) images may limit generalizability of the results. We evaluated several MRI-free approaches for amyloid beta (Aß) and tau PET quantification relative to MRI-dependent quantification cross-sectionally and longitudinally. METHODS: We compared baseline MRI-free and MRI-dependent measurements of Aß PET ([18F]florbetapir [FBP], N = 1290, [18F]florbetaben [FBB], N = 290) and tau PET ([18F]flortaucipir [FTP], N = 768) images with respect to continuous and dichotomous agreement, effect sizes of Aß+ impaired versus Aß- unimpaired groups, and longitudinal standardized uptake value ratio (SUVR) slopes in a subset of individuals. RESULTS: The best-performing MRI-free approaches had high continuous and dichotomous agreement with MRI-dependent SUVRs for Aß PET and temporal flortaucipir (R2 ≥0.95; ± agreement ≥92%) and for Alzheimer's disease-related effect sizes; agreement was slightly lower for entorhinal flortaucipir and longitudinal slopes. DISCUSSION: There is no consistent loss of baseline or longitudinal AD-related signal with MRI-free Aß and tau PET image quantification.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Peptídeos beta-Amiloides , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética , Proteínas tau , Disfunção Cognitiva/patologia
19.
J Neurosci ; 41(42): 8839-8847, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34531286

RESUMO

The mechanisms underlying accumulation of Alzheimer's disease (AD)-related tau pathology outside of the medial temporal lobe (MTL) in older adults are unknown but crucial to understanding cognitive decline. A growing body of evidence from human and animal studies strongly implicates neural connectivity in the propagation of tau in humans, but the pathways of neocortical tau spread and its consequences for cognitive function are not well understood. Using resting state functional magnetic resonance imaging (fMRI) and tau PET imaging from a sample of 97 male and female cognitively normal older adults, we examined MTL structures involved in medial parietal tau accumulation and associations with memory function. Functional connectivity between hippocampus (HC) and retrosplenial cortex (RsC), a key region of the medial parietal lobe, was associated with tau in medial parietal lobe. By contrast, connectivity between entorhinal cortex (EC) and RsC did not correlate with medial parietal lobe tau. Further, greater hippocampal-retrosplenial (HC-RsC) connectivity was associated with a stronger correlation between MTL and medial parietal lobe tau. Finally, an interaction between connectivity strength and medial parietal tau was associated with episodic memory performance, particularly in the visuospatial domain. This pattern of tau accumulation thus appears to reflect pathways of neural connectivity, and propagation of tau from EC to medial parietal lobe via the HC may represent a critical process in the evolution of cognitive dysfunction in aging and AD.SIGNIFICANCE STATEMENT The accumulation of tau pathology in the neocortex is a fundamental process underlying Alzheimer's disease (AD). Here, we use functional connectivity in cognitively normal older adults to track the accumulation of tau in the medial parietal lobe, a key region for memory processing that is affected early in the progression of AD. We show that the strength of connectivity between the hippocampus (HC) and retrosplenial cortex (RsC) is related to medial parietal tau burden, and that these tau and connectivity measures interact to associate with episodic memory performance. These findings establish the HC as the origin of medial parietal tau and implicate tau pathology in this region as a crucial marker of the beginnings of AD.


Assuntos
Giro do Cíngulo/metabolismo , Hipocampo/metabolismo , Memória/fisiologia , Neocórtex/metabolismo , Rede Nervosa/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Estudos Transversais , Feminino , Giro do Cíngulo/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Neocórtex/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos
20.
J Neurosci ; 41(2): 366-375, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33219003

RESUMO

Studies suggest that tau deposition starts in the anterolateral entorhinal cortex (EC) with normal aging, and that the presence of ß-amyloid (Aß) facilitates its spread to neocortex, which may reflect the beginning of Alzheimer's disease (AD). Functional connectivity between the anterolateral EC and the anterior-temporal (AT) memory network appears to drive higher tau deposition in AT than in the posterior-medial (PM) memory network. Here, we investigated whether this differential vulnerability to tau deposition may predict different cognitive consequences of EC, AT, and PM tau. Using 18F-flortaucipir (FTP) and 11C-Pittsburgh compound-B (PiB) positron emission tomography (PET) imaging, we measured tau and Aß in 124 cognitively normal human older adults (74 females, 50 males) followed for an average of 2.8 years for prospective cognition. We found that higher FTP in all three regions was individually related to faster memory decline, and that the effects of AT and PM FTP, but not EC, were driven by Aß+ individuals. Moreover, when we included all three FTP measures competitively in the same model, only AT FTP significantly predicted memory decline. Our data support a model whereby tau, facilitated by Aß, transits from EC to cortical regions that are most closely associated with the anterolateral EC, which specifically affects memory in the initial stage of AD. Memory also appears to be affected by EC tau in the absence of Aß, which may be less clinically consequential. These findings may provide clarification of differences between normal aging and AD, and elucidate the transition between the two stages.SIGNIFICANCE STATEMENT Tau and ß-amyloid (Aß) are hallmarks of Alzheimer's disease (AD) but are also found in cognitively normal people. It is unclear whether, and how, this early deposition of tau and Aß may affect cognition in normal aging and the asymptomatic stage of AD. We show that tau deposition in the entorhinal cortex (EC), which is common in advanced age, predicts memory decline in older adults independent of Aß, likely reflecting normal, age-related memory loss. In contrast, tau in anterior-temporal (AT) regions is most predictive of memory decline in Aß+ individuals. These data support the idea that tau preferentially spreads to specific cortical regions, likely through functional connections, which plays a primary role in memory decline in the early stage of AD.


Assuntos
Envelhecimento/genética , Cognição , Disfunção Cognitiva/genética , Proteínas tau/genética , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/crescimento & desenvolvimento , Função Executiva , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/crescimento & desenvolvimento , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA