Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Proteome Res ; 19(3): 1037-1051, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31995381

RESUMO

Common wheat (Triticum aestivum L.) is a global staple crop, and insect pests can impact grain yield. The wheat stem sawfly (Cephus cinctus, WSS) is a major wheat pest, and while partial resistance has been deployed by breeding for a solid-stem trait, this trait is affected by environment. Here, a proteomics and metabolomics study was performed on four wheat cultivars to characterize a molecular response to WSS infestation. The cultivars Hatcher (hollow-stem partially tolerant), Conan (semisolid-stem-resistant), and Denali and Reeder (hollow-stem-susceptible) were infested with WSS, and changes in stem proteins and metabolites were characterized using liquid chromatography-mass spectrometry. The proteome was characterized as 1830 proteins that included five major biological processes, including metabolic processes and response to stimuli, and the metabolome (1823 metabolites) spanned eight chemical superclasses, including alkaloids, benzenoids, and lipids. All four varieties had a molecular response to WSS following infestation. Hatcher had the most distinct changes, whereby 62 proteins and 29 metabolites varied in metabolic pathways involving enzymatic detoxification, proteinase inhibition, and antiherbivory compound production via benzoxazinoids, neolignans, and phenolics. Taken together, these data demonstrate variation in the wheat stem molecular response to WSS infestation and support breeding for molecular resistance in hollow-stem cultivars.


Assuntos
Himenópteros , Proteômica , Animais , Metaboloma , Metabolômica , Melhoramento Vegetal
2.
Plant Physiol ; 176(1): 596-610, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29150559

RESUMO

Iron (Fe) is an essential element for plants, utilized in nearly every cellular process. Because the adjustment of uptake under Fe limitation cannot satisfy all demands, plants need to acclimate their physiology and biochemistry, especially in their chloroplasts, which have a high demand for Fe. To investigate if a program exists for the utilization of Fe under deficiency, we analyzed how hydroponically grown Arabidopsis (Arabidopsis thaliana) adjusts its physiology and Fe protein composition in vegetative photosynthetic tissue during Fe deficiency. Fe deficiency first affected photosynthetic electron transport with concomitant reductions in carbon assimilation and biomass production when effects on respiration were not yet significant. Photosynthetic electron transport function and protein levels of Fe-dependent enzymes were fully recovered upon Fe resupply, indicating that the Fe depletion stress did not cause irreversible secondary damage. At the protein level, ferredoxin, the cytochrome-b6f complex, and Fe-containing enzymes of the plastid sulfur assimilation pathway were major targets of Fe deficiency, whereas other Fe-dependent functions were relatively less affected. In coordination, SufA and SufB, two proteins of the plastid Fe-sulfur cofactor assembly pathway, were also diminished early by Fe depletion. Iron depletion reduced mRNA levels for the majority of the affected proteins, indicating that loss of enzyme was not just due to lack of Fe cofactors. SufB and ferredoxin were early targets of transcript down-regulation. The data reveal a hierarchy for Fe utilization in photosynthetic tissue and indicate that a program is in place to acclimate to impending Fe deficiency.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Deficiências de Ferro , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Transporte de Elétrons/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ferro/metabolismo , Luz , Fotossíntese/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Anal Bioanal Chem ; 411(19): 4839-4848, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30879116

RESUMO

Plant development, growth, and adaptation to stress are regulated by phytohormones, which can influence physiology even at low concentrations. Phytohormones are chemically grouped according to both structure and function as auxins, cytokinins, abscisic acid, jasmonates, salicylates, gibberellins, and brassinosteroids, among others. This chemical diversity and requirement for highly sensitive detection in complex matrices create unique challenges for comprehensive phytohormone analysis. Here, we present a robust and efficient quantitative UPLC-MS/MS assay for 17 phytohormones, including jasmonates, salicylates, abscisic acid, gibberellins, cytokinins, and auxins. Using this assay, 12 phytohormones were detected and quantified in sorghum plant tissue without the need for solid phase extraction (SPE) or liquid-liquid extraction. Variation of phytohormone profiles was explored in both root and leaf tissues between three genotypes, harvested at two different developmental time points. The results highlight the importance of tissue type, sampling time, and genetic factors when designing experiments that involve phytohormone analysis of sorghum. This research lays the groundwork for future studies, which can combine phytohormone profiling with other datasets such as transcriptome, soil microbiome, genome, and metabolome data, to provide important functional information about adaptation to stress and other environmental variables.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ensaios de Triagem em Larga Escala/métodos , Reguladores de Crescimento de Plantas/análise , Folhas de Planta/química , Raízes de Plantas/química , Sorghum/química , Espectrometria de Massas em Tandem/métodos
4.
Int J Mol Sci ; 20(2)2019 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-30669498

RESUMO

Root exudation is an important plant process by which roots release small molecules into the rhizosphere that serve in overall plant functioning. Yet, there is a major gap in our knowledge in translating plant root exudation in artificial systems (i.e., hydroponics, sterile media) to crops, specifically for soils expected in field conditions. Sorghum (Sorghum bicolor L. Moench) root exudation was determined using both ultra-performance liquid chromatography and gas chromatography mass spectrometry-based non-targeted metabolomics to evaluate variation in exudate composition of two sorghum genotypes among three substrates (sand, clay, and soil). Above and belowground plant traits were measured to determine the interaction between sorghum genotype and belowground substrate. Plant growth and quantitative exudate composition were found to vary largely by substrate. Two types of changes to rhizosphere metabolites were observed: rhizosphere-enhanced metabolites (REMs) and rhizosphere-abated metabolites (RAMs). More REMs and RAMs were detected in sand and clay substrates compared to the soil substrate. This study demonstrates that belowground substrate influences the root exudate profile in sorghum, and that two sorghum genotypes exuded metabolites at different magnitudes. However, metabolite identification remains a major bottleneck in non-targeted metabolite profiling of the rhizosphere.


Assuntos
Genótipo , Metaboloma , Metabolômica , Exsudatos de Plantas/metabolismo , Rizosfera , Sorghum/genética , Sorghum/metabolismo , Cromatografia Líquida , Biologia Computacional/métodos , Metabolismo Energético , Cromatografia Gasosa-Espectrometria de Massas , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Solo/química , Microbiologia do Solo , Estresse Fisiológico
5.
Plant Cell Environ ; 41(9): 2141-2154, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29476531

RESUMO

Plant physiology and metabolism are important components of a plant response to microbial pathogens. Physiological resistance of common bean (Phaseolus vulgaris L.) to the fungal pathogen Sclerotinia sclerotiorum has been established, but the mechanisms of resistance are largely unknown. Here, the physiological and metabolic responses of bean varieties that differ in physiological resistance to S. sclerotiorum are investigated. Upon infection, the resistant bean variety A195 had a unique physiological response that included reduced photosynthesis and maintaining a higher leaf surface pH during infection. Leaf metabolomics was performed on healthy tissue adjacent to the necrotic lesion at 16, 24, and 48 hr post inoculation, and 144 metabolites were detected that varied between A195 and Sacramento following infection. The metabolites that varied in leaves included amines/amino acids, organic acids, phytoalexins, and ureides. The metabolic pathways associated with resistance included amine metabolism, uriede-based nitrogen remobilization, antioxidant production, and bean-specific phytoalexin production. A second experiment was conducted in stems of 13 bean genotypes with varying resistance. Stem resistance was associated with phytoalexin production, but unlike leaf metabolism, lipid changes were associated with susceptibility. Taken together, the data supports a multifaceted, physiometabolic response of common bean to S. sclerotiorum that mediates resistance.


Assuntos
Ascomicetos/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , Phaseolus/fisiologia , Folhas de Planta/metabolismo , Resistência à Doença , Concentração de Íons de Hidrogênio , Ácido Cinurênico/metabolismo , Nitrogênio/metabolismo , Phaseolus/microbiologia , Fotossíntese , Doenças das Plantas/microbiologia , Folhas de Planta/fisiologia , Caules de Planta/metabolismo , Estômatos de Plantas/fisiologia
6.
Int J Mol Sci ; 19(2)2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29360745

RESUMO

Wheat (Triticum aestivum L.) is an important food crop, and biotic and abiotic stresses significantly impact grain yield. Wheat leaf and stem surface waxes are associated with traits of biological importance, including stress resistance. Past studies have characterized the composition of wheat cuticular waxes, however protocols can be relatively low-throughput and narrow in the range of metabolites detected. Here, gas chromatography-mass spectrometry (GC-MS) metabolomics methods were utilized to provide a comprehensive characterization of the chemical composition of cuticular waxes in wheat leaves and stems. Further, waxes from four wheat cultivars were assayed to evaluate the potential for GC-MS metabolomics to describe wax composition attributed to differences in wheat genotype. A total of 263 putative compounds were detected and included 58 wax compounds that can be classified (e.g., alkanes and fatty acids). Many of the detected wax metabolites have known associations to important biological functions. Principal component analysis and ANOVA were used to evaluate metabolite distribution, which was attributed to both tissue type (leaf, stem) and cultivar differences. Leaves contained more primary alcohols than stems such as 6-methylheptacosan-1-ol and octacosan-1-ol. The metabolite data were validated using scanning electron microscopy of epicuticular wax crystals which detected wax tubules and platelets. Conan was the only cultivar to display alcohol-associated platelet-shaped crystals on its abaxial leaf surface. Taken together, application of GC-MS metabolomics enabled the characterization of cuticular wax content in wheat tissues and provided relative quantitative comparisons among sample types, thus contributing to the understanding of wax composition associated with important phenotypic traits in a major crop.


Assuntos
Metaboloma , Metabolômica , Compostos Fitoquímicos/análise , Triticum/metabolismo , Ceras/química , Análise por Conglomerados , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica/métodos , Folhas de Planta/metabolismo , Caules de Planta/metabolismo
7.
J Exp Bot ; 66(15): 4595-606, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26022252

RESUMO

A major proportion of plant biomass is derived from the activity of the cambium, a lateral meristem responsible for vascular tissue formation and radial organ enlargement in a process termed secondary growth. In contrast to our relatively good understanding of the regulation of primary meristems, remarkably little is known concerning the mechanisms controlling secondary growth, particularly how cambial cell divisions are regulated and integrated with vascular differentiation. A genetic loss-of-function approach was used here to reveal a rate-limiting role for the Arabidopsis CYCLIN D3 (CYCD3) subgroup of cell-cycle genes in the control of cambial cell proliferation and secondary growth, providing conclusive evidence of a direct link between the cell cycle and vascular development. It is shown that all three CYCD3 genes are specifically expressed in the cambium throughout vascular development. Analysis of a triple loss-of-function CYCD3 mutant revealed a requirement for CYCD3 in promoting the cambial cell cycle since mutant stems and hypocotyls showed a marked reduction in diameter linked to reduced mitotic activity in the cambium. Conversely, loss of CYCD3 provoked an increase in xylem cell size and the expression of differentiation markers, showing that CYCD3 is required to restrain the differentiation of xylem precursor cells. Together, our data show that tight control of cambial cell division through developmental- and cell type-specific regulation of CYCD3 is required for normal vascular development, constituting part of a novel mechanism controlling organ growth in higher plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Ciclinas/genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Câmbio/genética , Câmbio/crescimento & desenvolvimento , Proliferação de Células , Ciclinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
8.
Plant Physiol ; 155(1): 157-68, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21062890

RESUMO

Biofuels provide a promising route of producing energy while reducing reliance on petroleum. Developing sustainable liquid fuel production from cellulosic feedstock is a major challenge and will require significant breeding efforts to maximize plant biomass production. Our approach to elucidating genes and genetic pathways that can be targeted for improving biomass production is to exploit the combination of genomic tools and genetic diversity in rice (Oryza sativa). In this study, we analyzed a diverse set of 20 recently resequenced rice varieties for variation in biomass traits at several different developmental stages. The traits included plant size and architecture, aboveground biomass, and underlying physiological processes. We found significant genetic variation among the 20 lines in all morphological and physiological traits. Although heritability estimates were significant for all traits, heritabilities were higher in traits relating to plant size and architecture than for physiological traits. Trait variation was largely explained by variety and breeding history (advanced versus landrace) but not by varietal groupings (indica, japonica, and aus). In the context of cellulosic biofuels development, cell wall composition varied significantly among varieties. Surprisingly, photosynthetic rates among the varieties were inversely correlated with biomass accumulation. Examining these data in an evolutionary context reveals that rice varieties have achieved high biomass production via independent developmental and physiological pathways, suggesting that there are multiple targets for biomass improvement. Future efforts to identify loci and networks underlying this functional variation will facilitate the improvement of biomass traits in other grasses being developed as energy crops.


Assuntos
Biomassa , Variação Genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Característica Quantitativa Herdável , Genoma de Planta/genética , Genótipo , Endogamia , Padrões de Herança/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
9.
Microbiology (Reading) ; 157(Pt 10): 2733-2744, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21719543

RESUMO

Dickeya dadantii is a plant-pathogenic bacterium that produces cellulose-containing biofilms, called pellicles, at the air-liquid interface of liquid cultures. D. dadantii pellicle formation appears to be an emergent property dependent upon at least three gene clusters, including cellulose synthesis, type III secretion system (T3SS) and flagellar genes. The D. dadantii cellulose synthesis operon is homologous to that of Gluconacetobacter xylinus, which is used for industrial cellulose production, and the cellulose nanofibres produced by D. dadantii were similar in diameter and branching pattern to those produced by G. xylinus. Salmonella enterica, an enterobacterium closely related to D. dadantii, encodes a second type of cellulose synthesis operon, and it produced biofilm strands that differed in width and branching pattern from those of D. dadantii and G. xylinus. Unlike any previously described cellulose fibre, the D. dadantii cellulose nanofibres were decorated with bead-like structures. Mutation of the cellulose synthesis operon genes resulted in loss of cellulose synthesis and production of a cellulase-resistant biofilm. Mutation of other genes required for pellicle formation, including those encoding FliA (a sigma factor that regulates flagella production), HrpL (a sigma factor that regulates the T3SS), and AdrA, a GGDEF protein, affected both biofilm and cell morphology. Mutation of the cellulose synthase bcsA or of bcsC resulted in decreased accumulation of the T3SS-secreted protein HrpN.


Assuntos
Sistemas de Secreção Bacterianos , Biofilmes , Celulose/biossíntese , Celulose/química , Enterobacteriaceae/fisiologia , Óperon , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterobacteriaceae/química , Enterobacteriaceae/genética , Regulação Bacteriana da Expressão Gênica , Mutação , Nanofibras/química
10.
Front Plant Sci ; 12: 571072, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613594

RESUMO

Root pressure, also manifested as profusive sap flowing from cut stems, is a phenomenon in some species that has perplexed biologists for much of the last century. It is associated with increased crop production under drought, but its function and regulation remain largely unknown. In this study, we investigated the initiation, mechanisms, and possible adaptive function of root pressure in six genotypes of Sorghum bicolor during a drought experiment in the greenhouse. We observed that root pressure was induced in plants exposed to drought followed by re-watering but possibly inhibited by 100% re-watering in some genotypes. We found that root pressure in drought stressed and re-watered plants was associated with greater ratio of fine: coarse root length and shoot biomass production, indicating a possible role of root allocation in creating root pressure and adaptive benefit of root pressure for shoot biomass production. Using RNA-Seq, we identified gene transcripts that were up- and down-regulated in plants with root pressure expression, focusing on genes for aquaporins, membrane transporters, and ATPases that could regulate inter- and intra-cellular transport of water and ions to generate positive xylem pressure in root tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA